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Abstract. In this paper, an online tuning method based on time-domain performance specification is proposed 
to determine the parameters of standard PI controllers. The method uses a process model to predict the future 
output and to detect the specification violation. The maximum performance violation along with general tuning 
guidelines formulated as fuzzy sets and rules are used to find the new PI parameter values. The procedure is 
repeated each sampling time to provide continuous automatic tuning of the PI controller so that it can preserve 
good performance over a wide range of operating conditions.  The algorithm allows the usage of any form of 
models and uses four simple fuzzy sets with eleven simple fuzzy rules to maintain simplicity and minimum 
computational effort. Numerical testing of the algorithm on a CSTR and on an evaporator example shows that 
better performance than what can be achieved by standard PID controllers for both set point change and load 
disturbance.  
Keywords: PI controller, Self-tuning, Fuzzy rules, Performance specification.  
 

Nomenclature 
 

a Coefficient for the linear model 
A Scaled measure for the upper bound violation 
A Pre-calculated constant matrix i,j 
b Coefficient for the linear model 
B Scaled measure for the lower bound violation 
C Scaled measure of the violation rate, also a constant matrix 
CA,CB, C Concentration of the reactant A, product B, and the feed, kmole/mAf 
C

3 
1, C Feed and Product composition in percentage, respectively 2 

C Heat capacity for cooling water, kW/kg min p 
d Estimated of model-plant mismatch 
e Error signal 
F Feed flow rate m3

F
/min 

1, F Feed and product flow rates, kg/min 2   
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FR3R, FR4R, FR5 Recycle, vapor and condensate flow rate, kg/min 
FR200 Cooling water flow rate, kg/min 
K Sampling time 
kR1R, kR2, RkR3 Reaction rate constants for the CSTR, 1/hr, 1/hr, 1/kmole hr. 
kRcR, kRI PI parameters; controller gain and reciprocal integral time, respectively 
KRcR, KRI Diagonal matrices of controller gain and reciprocal integral time 
M Constant 
nR1R,nR2R,nR3 Dimension of the three zones of the performance envelope 
nRRR, nRf Number of fuzzy rules and number of fuzzy functions 
PRw Closed-loop prediction horizon 
PR100R, PR2 Steam and product pressure, respectively, kPa 
T Time 
TR1R, TR200 Feed and Cooling water temperature, P

o
PC 

U Manipulated variable 
UA Product of heat transfer coefficient and the transfer area, kW/K. 
V Reactor volume, mP

3 
y, yRr Vector of outputs and set points, respectively 
yRP Plant output 
yP

l
P, yP

u Lower and upper bounds on y 
W Multiplication factor for the tuning parameters 
z, zRe State space vectors 

 
Greek letters 

δ Pre-calculated constant factor 
µ Membership function 
τRΙ Integral time constant 
λRs1 Latent heat of steam at saturation condition, kW/Kg min. 
λRs2 Latent heat of evaporation of water, kW/kg min. 

 
 

Introduction 
 
Conventional PID controllers have been and are still widely used in the chemical 
industry. PID controllers are simple, easy to understand and implement in hardware and 
software, and do not require a process model for initialization or operation. However, 
frequent fine-tuning of the PI controller for good performance and/or stability is essential 
especially for highly non-linear and/or coupled processes. In real applications, tuning of 
a PID is usually a cumbersome experience. Many efforts dealing with tuning of such 
controllers for better performance have been reported. A review of these methods can be 
found in earlier research works [1-4] or in survey papers [5, 6]. These methods can be 
classified under three categories; reaction curve method, continuous oscillation method 
and frequency domain method. Despite the variation between these methods, they are all 
implemented offline and applied for SISO control loops. In real practice, most of the 
chemical processes are multivariable with strong cross-loop interaction. In this case, if 
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each SISO loop in the process is tuned individually, the overall process performance 
may deteriorate due to interaction brought in by closing all loops simultaneously. 
Moreover, the process may operate at different operating conditions either voluntarily 
due to grade changeover or inevitably due to severe load changes. In this case, a SISO 
loop tuned for a specific operating condition may degrade for another condition. 
Therefore, controllers tuned using the aforementioned methods may not necessarily 
provide stability or good performance over wide range of operating conditions. 
 

To deal with the tuning problem, a self-tuning procedure is required. For this 
reason, Ali [1-4] has developed an automatic (continuous) self-tuning PI controller. The 
PI controller parameters are tuned such that the resulted closed-loop response satisfies a 
certain time-domain specification. The proposed tuning method is model based. The 
model is used for two purposes. One purpose is to predict the future dynamics of the 
process and to detect whether violation of the time-domain specification occurs or not. 
Another purpose is to obtain the sensitivity of the closed-loop response with respect to 
the PI settings. The sensitivity expression is the heart of the tuning method. In this 
paper, the sensitivity expressions are eliminated. Instead, fuzzy sets and rules [7] are 
used. This modification will add some advantages. First, the reliance on the process 
model is reduced because the model will be used only for prediction and detection. 
Secondly, the design effort will be reduced knowing that the sensitivity expressions are 
sometime difficult to obtain and/or that the solution of the sensitivity increases 
computational load.  

 
Many efforts dealing with tuning the PI controllers using fuzzy logic have been 

reported. Bandyopadhyay and Patranabis [8] proposed an autotuner for PI controllers 
based on fuzzy logic. The method computes each sampling time new PI parameters 
using a scaling factor to provide dead-beat performance. The scaling factor depends on 
expert knowledge and thus, it is not clear how to extend the method to different type of 
processes.  Xu et al. [9] and Rajani et al. [10] developed a tuning scheme based on fuzzy 
logic. However, the control law and structure are based on PID-type fuzzy controller and 
not on a standard PI algorithm formulation. Miler et al. [11] proposed a PID  tuning 
strategy based on fuzzy logic to control a specific bioreactor. The proposed method tunes 
the PID parameters online each sampling time using fuzzy set and rules. However, the 
fuzzy rules are generated from expert knowledge of the oxygen consumption in the 
reactor. Therefore, this method can not be generalized easily to other processes. Fuzzy 
logic theory is also used to design a gain scheduler for PID controllers [12, 13]. In these 
methods, fuzzy rules are used to switch or interpolate between pre-calculated values for 
the PI parameters when the process moves from one operating condition to another. The 
drawback of this approach is that different operating regions for the process should be 
defined and subsequently the PID controller should be well designed for each region 
beforehand. Chan [14] developed an automatic tuner for PID controllers based on fuzzy 
rules and sets. However, the proposed method requires training the fuzzy rules using 
different closed-loop responses generated at different sets of PI parameter values. 
Ramkumar and Chidambaram [15] suggested another fuzzy self-tuning PI controller. The 
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tuning algorithm is based on the output error signal and not on a certain performance 
specification. Moreover, the rules base is generated from iterative simulation procedure 
implemented on the given process. Therefore, it may not work well for another process.  
He et al. [16] proposed another fuzzy self-tuning method. The method is based on 
parameterizing the Ziegler-Nichols tuning formula by a single parameter. A fuzzy 
inference mechanism is used to self-tune the new parameter. The method is tested only 
on simple linear models.  Moreover, the parameters are tuned to speed up the response, 
but no specific time-domain performance is used to shape the whole response.  Pfeiffer 
and Isermann 

 

[17] have also proposed a self-tuning PI controller using fuzzy logic. The 
two parameters of the PI controller are adapted based on two fuzzified variables of the 
measured overshoot and settling ratio. The method requires the current signal of the 
control error to estimate the two fuzzified variables.  In this case, the method lacks 
prediction capability. Consequently, the PI parameters are adapted only when some loss 
in the performance has occurred. 

The proposed tuning method in this paper differs from those reported methods in 
three aspects. First, the proposed method adapts the PI parameters to obtain a certain 
time-domain specification, which is more appealing to a practitioner than other 
sophisticated specifications such as gain/phase margins, frequency-domain 
specifications, pole placement, ISE, complicated objective functions, etc. The time-
domain performance envelope also allows for easy visualization of the goodness of the 
response and thus the operator can adjust his performance envelope online for possible 
trade-off.  Secondly, the tuning method is based on general and well-known tuning 
guidelines rather than heuristic and/or expert knowledge. Thirdly, the tuning method 
uses future predictions of the output response, which permits advance correction of the 
PI parameters. This feature provides enhanced tuning especially for processes with dead-
time or inverse response. 

 
The objective of this paper is to develop an online automatic tuning method for the 

conventional PI controllers. The online feature of the proposed method allows the 
continuous adaptation of the PI settings to preserve its performance when the process 
undergoes through different operating conditions. The new method combines model-
based and rule-based tools to develop a self-tuning scheme. The process model is helpful 
in determining the process dynamics due to a disturbance or a set point change. The rule 
base is useful to transform the general tuning guidelines into a specific inference engine. 
The conclusion of the inference engine fixes the PI parameters properly so that good 
performance is achieved.     

 
On-line Tuning of the PI Parameters 

 
The tuning technique adapts on-line the PI  control parameters in order to steer the 

closed-loop response to satisfy preset time-domain desired specifications. Examples of 
time-domain specifications for set point tracking and disturbance rejection applications 
are shown in Fig. 1. The shape of the performance specifications can be designed to 
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reduce overshoot, reject disturbances, and maintain proper speed of the response. The 
user should provide his nominal performance specifications in the form of vectors of 
upper and lower bounds, yu and yl respectively. The performance envelope should have a 
specific window size. Within this window size, the envelope consists of several zones. 
The first zone is the startup, which spans n1 time units, the second zone is the settling 
zone, which spans n2 time units, and finally the steady zone, which spans n3 time units. 
The size of the bound in each zone should be designed by the user according to his 
understanding of the process dynamics. Also, the user should define a value for the 
closed-loop prediction horizon, Pw. More elaboration on the utilization of Pw

 

 will be 
discussed later. The tuning algorithm consists of two phases namely: observation and 
triggering phases.  

Observation phase 
 
 In the observation phase, the algorithm monitors the closed-loop prediction of the 
output. If the prediction violates the preset performance specifications or if the output set 
point is changed, then the algorithm switches into the triggered phase. In the same time, 
the algorithm adjusts the nominal performance specifications automatically to match the 
actual process behavior. The method of performance specifications adjustments is 
discussed elsewhere [1-4]. The closed-loop predictions are obtained by numerical 
integration of a process model over Pw

 

. In this paper, state space models are used. 
However, the tuning algorithm is not limited to this type of models. In fact, any form of 
model can be used to predict the future outputs. In this paper, the process is modeled as 
follows: 

 
  ),,(

Czy
tuzfz

=
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(1) 
(2) 

 
and the following decentralized PI control law is considered:  
 

 
Fig. 1. Example of the performance specification envelope, (a) set point change; (b) step disturbance. 
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where Kc and KI are diagonal matrices with their diagonal elements being the controller 
gain (kci) and the reciprocal integral time (τIi) for each control loop, respectively. 
Solution of Eqs. (1-2) along with (3-4) gives the closed-loop simulation of the process 
under a standard PI control structure. Note that in Eq. (3), the process measurement, yp is 
required. Because future values for yp

    

 are not available, the model outputs obtained from 
Eq. (2) are used instead. To dampen the effect of model-plant mismatch, a correction 
factor is added to the model outputs. The correction factor is defined as follows: 

d(k) = yp (5) (k) – y(k) 
 
 As mentioned earlier, during prediction, future values for yp

 

 are not available. 
Therefore a constant value for d at the current sampling time k is used to correct the 
model outputs. The above control law (Eqs. 3 & 4) are presented in a continuous-time 
format. However, in this paper the control law is implemented in a discrete-time fashion 
to simulate real practice. 

Triggering phase 
 In the triggering phase, the magnitude of performance violation and its rate are 
calculated from which a new value for the PI tuning parameters is determined. The new 
values of the PI parameters will be determined by a fuzzy logic system. The fuzzy logic 
system consists of three consecutive stages. Fuzzification is the first stage followed by 
the Base rules (inference engine) stage and finally the Defuzzification stage. Each stage 
is explained in the following section. Here, it is assumed that the reader is familiar with 
fuzzy logic terminology and concepts.  
 
Fuzzification: 
 In this stage, a specific measured variable is transformed into a member of a set of 
fuzzy membership functions. Three different input sets of membership functions and one 
output set of membership functions are used in this paper. The first input set is shown in 
Fig. 2. The set consists of two membership functions namely: (G)ood denoted as µG and 
(H)igh denoted as µH

 

. The universe of discourse of this set spans the possible values for 
its specific input, which is the scaled value for the bound violation. The scaled bound 
violation is defined as follows: 

If upper bound is violated: 
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If lower bound is violated: 
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(7) 

 
where yj is the predicted value of the jth output. yu and yl are the upper and lower bound 
for y as described earlier. Also, k is the sampling time and m is the instant at which 
maximum violation occurs for the jth output. The jth

 

 output is determined such that it is 
the one with the maximum violation over all other outputs. The definition of A and B in 
the above equations guarantees positive value when the corresponding bound is violated 
and negative otherwise. Note that the upper and lower bounds can not be violated in the 
same time by one specific output. Therefore, if the upper bound is violated, then A 
belongs to the H membership function and B to the G membership function and vice 
versa. If neither bound is violated, then A and B belongs to the G membership function. 
This argument applies for the case of set point change. It also applies to disturbance case 
with the exception that the belonging of B to the membership functions is reversed.  The 
reason for reversing is that the lower bound in the disturbance case is always negative 
because deviation variables are used in this paper. 

 The second input set of membership functions is shown in Fig. 3. The set consists 
of three functions namely: (P)ositive, (Z)ero and (N)egative. These functions are labeled 
µP, µZ and µN

 

, respectively. The input to this fuzzy set is the scaled violation rate, which 
is defined as follows: 
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(8) 

 
Fig. 2. Input fuzzy set for bound violation A & B. 
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The above expression for violation rate applies for both upper and lower bound 
violation. Note that scaled values are used for the bound violation measure (A, B) and its 
rate (C). The reason for that is to simplify the determination of the possible range for the 
universe of discourse in Figs. 2 and 3. The third input fuzzy set is shown in Fig. 4. The 
input to this fuzzy set is the simulation (or real) time, which is denoted as T. The 
corresponding membership function becomes active when the time exceeds half of the 
startup time. This fuzzy set is labeled µT and will be used to activate certain fuzzy rules 
as will be discussed later. 

 
Fig. 3. Input fuzzy set for bound violation rate C. 

 
 
 

 
 

Fig. 4. Input fuzzy set for time T. 
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 It should be noted that the predicted value of the output y is obtained from solving 
Eqs. (1) and (2). The calculated value is then corrected by adding the disturbance 
estimates, d (Eq. 5), to it before being used in Eqs. (6-8). This also provides some feed 
back from the process. 
 
Inference Engine: 
 The rule base governing the tuning guidelines is given in Table 1. In the table, µ, 
represents the rule output. These rules apply for both kc and kI and for set point change 
and disturbance. Exceptions are that R1, R2, R4 and R7 are reversed in the disturbance 
case. The result of each rule given in Table 1 activates a specific output fuzzy set. The 
output membership functions (i.e. output fuzzy sets) are denoted as  LN, SN, ZE, SP and 
LP as shown in Fig. 5. To simplify the numerical treatment, these functions are labeled 
µ5, µ4, µ3, µ2 and µ1 respectively. The rules given in Table 1 formulate the general 
understanding of the effect of kc and kI

 

 on the closed-loop response. The general effect 
of these parameters is explained next. 

Table 1. The base rules  
No. Rule Result  Definition 

R1 If A is H and B is G Then  is SN Upper bound is violated, reduce kc  & ki  

R2 If A is G and B is H Then  is SP Lower bound is violated, increase kc  & k
R3 

i 

If A is G and B is G Then  is ZE Neither bound is violated, no change  

R4 If A is H and C is P Then  is SN Upper bound is violated and its rate is increasing, 
reduce kc  & ki

R5 

  

If A is H and C is Z Then  is LP Upper bound is violated and its rate is stationary, 
increase kc  & k

R6 
i 

If A is H and C is N Then  is ZE Upper bound is violated and its rate is decreasing, wait 
and see 

R7 If B is H and C is P Then  is SP Lower bound is violated and its rate is increasing, 
increase kc  & k

R8 
i 

If B is H and C is Z Then  is LP Lower bound is violated and its rate is stationary, 
increase kc  & k

R9 
i 

If B is H and C is N Then  is ZE Lower bound is violated and its rate is decreasing, wait 
and see 

R10 If A is H and T is L Then  is LN Upper bound is violated and time  exceeded the startup 
time, reduce kc  & k

R11 
i 

If B is H and T is L Then  is LN Lower bound is violated and time  exceeded the 
startup time, reduce kc  & ki 

 
 To illustrate the general effect of kc and kI on the closed-loop response, several 
simulation tests were carried out as shown in Fig. 5.  The simulation shown in Fig. 6 is 
based on the CSTR example discussed later. The influence of varying kc at fixed kI and 
the influence of varying kI at fixed kc for set point change is shown in Fig. 6a and 6b, 
respectively. It is clear that kc and kI have similar effect on the response. In this case, 
increasing one of these parameters leads to a faster response. However, this will be at the 
expense of higher overshot and oscillation. Therefore, if fast response is sought, then the 
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PI parameters should be increased. On the other hand, if less overshoot is sought, then 
the PI parameters should be decreased. Moreover, to eliminate oscillation and/or provide 
stability at low frequency (i.e., asymptotically), the PI parameters should be decreased. 
 

 
 The influence of varying kc at fixed kI and the influence of varying kI at fixed kc

 

 
for rejecting a load disturbance is shown in Fig. 5c and 5d, respectively. It is observed 
that increasing one of the PI parameters creates faster response with less overshoot. 
However, excessive increase of the PI parameters leads to oscillatory response. 
Therefore, if a faster response and/or a less overshoot is necessary, then the PI 
parameters should be increased. On the other hand, to stabilize the response ultimately 
(at low frequency), the PI parameters should be decreased. 

 The knowledge gained from the above analysis is the basis for the tuning rules 
listed in Table 1.  Note that the rules in Table 1 are developed for set point change and 
they are self-explained. In case of disturbance, R1, R2, R4 and R7 are reversed to 
accommodate the knowledge gained from the simulation shown in Fig. 5c and 5d.  It 
should be noted that rules 10 and 11 are designed to provide stability at low frequency 
(i.e. after the dominant time constant of the process has elapsed). These two rules are 
based on the idea that any lower or upper bound violation that occurs after the startup 
time has elapsed is due to oscillation caused by large values for the PI parameters. 
Therefore, an intuitive reaction is to decrease the PI parameters. On the other hand, rules 
5 and 8 are designed to eliminate offset. These rules are based on the idea that when the 
output violates the performance specifications and in the same time the output rate of 
change is very small, then the response suffers from an offset. This happens because the 
PI parameters became very small. In this case, increasing the PI parameters is an 
insightful reaction. The reasoning behind the rest of the rules given in Table 1 is 
straightforward. It should be noted that the possible tuning rules are not limited to those 
listed in Table 1. Any well-known knowledge or field experience can also be 
incorporated.  

  
Fig. 5. Output fuzzy set for w. 
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Defuzzification: 
 
 In this stage, the results of the second stage (inference engine) are combined in a 
special way to produce a crisp value for the output. The obtained crisp output is the 
factor that will be used to adjust the PI tuning parameters. This procedure of combining 
the results of the inference engine is known as defuzzification. The defuzzification 
procedure is similar to finding the weighted average. Here, we adopt the center of area 
(COA) defuzzification method(18)

 

.  Before discussing the COA method, some 
terminology will be explained. The base rules of Table 1 are in script (linguistic) form. 
They can be cast in mathematical form so that they can be directly used to calculate the 
output crisp value. For example, the results of rule 1 in Table 1 can be written as 
follows: 

µ4,1(w) = min (µH(A),µG (9) (Β)) 
 
where µH(A) is the membership grade of A to µH function or the degree of membership 
of A in the fuzzy set H. The same definition applies to µG(B) with respect to input B and 
fuzzy set G. On the other hand, µ j,i(•) denotes the membership degree of (•) to the jth 

 
Fig. 6. Closed-loop response to different values for kc and kI. 
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output membership function with respect to rule i. For example, µ4,1 denotes the 
membership degree to the 4th output membership function (i.e., SN) with respect to rule 
1. Note that in the above equations, the AND command is transformed into minimum 
operation. In this case, a common fuzzy rule operation 

 

[18] is followed. Using the above 
criteria, the entire rules listed in Table 1 can be written mathematically as in Eq. 9. 

 Having transformed the rules into mathematical expressions, the COA can be 
applied to find the output (factor) for kc and kI
 

 as follows: 
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where nR is the number of rules and equals 11 in this paper, nf is the number of output 
membership functions and equals 5 in this paper, and δ i is value for the location of the 
center of µi.. The value of δ i is pre-calculated and fixed as shown in Fig. 5.  A is nR x nf 
pre-calculated matrix, which identifies which membership function is included in each 
rule. For example, row 1 of matrix A, which is assigned for rule 1, contains 1 at the first 
column and zeros elsewhere. The same logic is carried out over the remaining rows. The 
argument z denotes either kc or ki. However, since kc and kI 

 

have exactly the same 
directional effect on the closed-loop response, only a single factor is computed for both 
parameters for each control loop. 

Triggering the tuning algorithm 
 
 As mentioned earlier the tuning method operates in two modes: observation and 
triggering. The triggering phase is entered when the tuning algorithm is triggered. The 
tuning method is activated either due to a set point change or to a load disturbance. In 
case of set point change, the tuning method is triggered automatically at the point where 
set point is modified.  In due course, all outputs with set point change will be assigned a 
performance envelope for set point tacking, while the output with zero set point change 
will be assigned a performance envelope for disturbance rejection as shown in Fig. 1. 
When the time exceeds the window size of the performance envelope, the tuning method 
is disabled and returned to the observation mode. In case of load disturbance, the tuning 
method can not be triggered automatically because the point at which a disturbance is 
injected in the process is usually unknown.  Hence, the algorithm will be operating in the 
observation phase during which the predicted output is checked against pre-defined 
threshold value. If the threshold is violated, then the process is assumed to be under the 
influence of disturbances. Therefore, the tuning algorithm is triggered and all outputs are 
assigned performance envelope for disturbance rejection. Whenever the time exceeds the 
window size of the performance envelope, the algorithm is disabled and returned to the 
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observation mode. The threshold value should be set by the user. It should be designed 
such that any process variation within the threshold is considered tolerable, e.g. due to 
measurement noise. 
 
PI Parameters Adaptation Algorithm: 
 
 The adaptation algorithm can be clearly understood by the following algorithm: 
At any on-line sampling point k, and before computing the control action:  
Step 1: Predict the closed-loop response over the prediction horizon (Pw

Step 2: Check whether the closed-loop prediction violates the specifications. If it does 
not, then go to step 5. 

) using Eqs. (1-
4) for fixed values of the tuning parameters and constant disturbance variables.  

Step 3: Determine the output index and the sampling point at which the maximum 
violation of the specification occurs.  Let this be for output j and point k+m. 
Step 4: Calculate the bound violation measure (A, B) and its rate (C ) using Eqs.  6-8. 

Step 4.1: Determine the degree of membership of A and B with respect to 
membership functions µG and µH. Also, determine the degree of membership of C & 
B and C & A with respect to membership functions µP and µZ, µN.  Determine the 
degree of membership of T (time) with respect to µT
Step 4.2: Calculate the adjustment factor w using Eq. (10). 

. 

Step 4.3: Set kc,j = kc,j (1+ w), kI,j = kI,j
Step 5: Compute and implement the control action. Advance to the next sampling time 
in real-time operation and set k=k+1. Go to step 1. 

 (1+ w /10). 

 
 In step 4.3 above, both PI parameters are adjusted by the same correction factor, w. 
The two PI parameters have similar influence on the closed-loop response. For example, 
increasing both kc and kI simultaneously and equally may lead to aggressive control 
actions. Similarly, decreasing both kc and kI simultaneously and equally may lead to a 
sluggish control action. On the other hand, changing kc and kI in different directions may 
not necessarily provide improved performance because the effect of each parameter will 
counteract the other. For this reason, both parameters are changed in the same direct, but 
at different rate to avoid over exploitation. Specifically, the rate of adjusting kI was made 
intentionally ten times slower than that of kc. This formulation does not necessarily 
result in optimal values for kc and kI

  

. However, this is not the main objective of the 
proposed method. It is only meant to establish automatic online adjustment of the 
parameters to provide acceptable response. 

 The algorithm has one parameter, namely Pw. The prediction horizon is an important 
design parameter as it provides advance prediction of the behavior of the closed-loop 
response, which may result in earlier correction of the PI parameters.  The larger the 
value of Pw, the more robust is the tuning algorithm, but the more the computational 
load is. On the other hand, a small value for Pw delays triggering and/or delays detection 
of bound violation. This will result in delayed correction of the controller parameters. A 
straightforward guideline for selecting the value of Pw is given elsewhere [1-4]. Since 
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the tuning algorithm works automatically, the manual adjustment of the PI tuning 
parameters is replaced by the manual adjustment of  a single parameter, which is Pw. 
Here, Pw
  

 is fixed so that the tuning procedure becomes fully automatic.   

It should be emphasized that the proposed tuning system retains the standard 
structure of the simple PI algorithms.  The pure function of the tuning method is to 
modify the PI settings each sampling time for the sake of a better performance.  In 
addition, to avoid complexity the method is kept as simple as possible where the user is 
only required to perform the following tasks: 

 
• Design a performance envelope for his control objective. 
• Come up with some sort of model needed for prediction. 

 
If these pieces of information are provided by the user, then the tuning method will 

be triggered and start adapting automatically. Moreover, the inference engine has to be 
designed once based on available tuning guidelines and/or simulations. If abnormal 
dynamics that is not covered by the inference engine is observed, then the fuzzy base 
rule can be simply modified to include the additional knowledge.   
 

Isothermal CSTR Example 
 

 This example is adopted from Wu 

 

[19]. It demonstrates a series/parallel reaction 
taking place in a CSTR. The non-linear model equation is given by: 

BBAB
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2
31

−−=
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(11a) 
(11b) 

 
where F is the inlet flow rate of component A, V is the reactor volume, CA and CB are 
concentration of the reactant and an intermediate, respectively. The reaction rate 
constants are assumed to be k1 = 50 1/hr, k2 = 100 1/hr and k3 = 101 1/kmole hr. The 
plant operating conditions are CAf = 10 kmol/m3, F/V = 1, CAss = 0.151 kmol/m3 and CBss 
= 0.075 kmol/m3. The control objective is to regulate the intermediate product, CB

buazz +=
 by 

manipulating the dilution rate, F/V. A linear model in the form of is 
obtained by step testing the plant. Specifically, 0.1 step change is applied in the dilution 
rate from which the model coefficients are determined to be a = 40 and b = 2.32.  
 

To implement the proposed tuning method, the performance specification is 
designed first. The nominal performance specification for set point change is designed 
such that it limits the overshoot to 10% in the first 10 samples, to bring the response 
within ±5% of the final steady state for the following 15 samples and eventually to 
within ±2% for the last 16 samples. The nominal performance specification for 
disturbance is designed such that it limits the overshoot to 3% in the first 10 samples, to 
bring the response within ±1% of the final steady state for the following 31 samples. The 
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threshold value is set to ±2% of the output steady state value. A sampling rate of 0.005 
hr is used in all simulations. Note that in all the following simulation, τI = 1/kI is shown 
in the figures and Pw is fixed at 10 for fair comparison.  It should be noted also that the 
PI controller is implemented on the non-linear plant model, i.e. Eqs. (10) and (11). The 
linear model is used only in the tuning algorithm to predict the output over Pw

 

. The 
discrepancy between the non-linear plant and linear model creates model-plant 
mismatch, which makes the control problem more challenging. In this example, the 
integral time is limited between 0.5 and 10 and the controller gain is limited between 1 
and 50.  The manipulated variable, i.e. the dilution rate is limited between 0 and 2.5.  

Figure 7 demonstrates the process response to a series of set point changes of 
+0.0152, 0.0252, -0.0252 as deviation from initial steady state. Aggressive initial PI 
settings of kc (0) =30 and kI (0) = 1 were used. The initial values for the PI settings are 
chosen such that they create oscillatory feedback response and thus testing the ability of 
the tuning method to smooth out the transient response. The light solid lines in Fig. 7 
represent the performance envelope. The dashed line in Fig. 7 shows the feedback 
performance for fixed PI settings at the given initial values. The solid line in the same 
figure shows the feedback response using the self-tuned PI algorithm. Since Pw is chosen 
equal to the size of the startup zone, the tuning algorithm started the adjustment at the 
beginning of the simulation. As a result, kc is decreased and τΙ  is increased. This 
correction helped in providing closed-loop response with a good decay ratio for the first 
set point change. During the second set point change, the PI settings were kept changing 
resulting in a perfect response. At the beginning of the third set point change, kc has 
already reached a small value and τ I a large value, a situation that could have caused a 
sluggish response if kc and τI

 

 were not changed. However, because of the prediction 
feature of the tuning algorithm, the PI settings were adapted properly to deliver a 
response with acceptable speed. Overall, the adapted response is superior to that with 
fixed PI settings.  

To test the opposite situation, the above set point change test is repeated with 
smaller initial values for the PI settings. Specifically, Fig. 8 shows the result for this case 
with kc (0) =10 and kI (0) = 0.1. The idea is to start with sluggish control performance. 
As expected sluggish response especially for the third set point change is observed when 
the PI controller is applied with fixed settings. However, the PI control performance 
improved substantially with the aid of the proposed tuning algorithm. In this case, kc was 
continuously increased accompanied with continuous decrease in τ I

 

. A situation led to 
improved control performance. Note that the feedback response for the first set point 
change was not enhanced as much as for the second and third set point changes. This is 
because the PI settings were modified gradually, which delayed their effect. 

Figure 9 shows the result of testing the tuning algorithm for disturbance rejection 
using small initial values for the PI settings of kc (0) =10 and kI (0) =0.1. The 
disturbance is taken as 20% increase in the reactant feed concentration, CAf. The 
disturbance takes place after two sampling instants from the beginning of the simulation.  
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As Fig. 9 

 

 
 

Fig. 7: CSTR  feedback response to Set point change using kc=30 and τI=1. 
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 demonstrates, the proposed tuning method managed to increase kc and equivalently 

decrease τI gradually. This modification helped in delivering somewhat faster recovery 
to the set point. The disturbance test is repeated using large initial values for the PI 
settings such as kc (0) =30 and kI (0) =1. The simulation result is depicted in Fig. 10. 
There is no doubt that the closed-loop response obtained at fixed PI settings is unstable.  
However, with the aid of the controller tuning method, the feedback response was 
stabilized. It is true that the initial oscillation lasted for some long period before it settles 
down. This is attributed to the infinitesimal change in the PI settings. The tuning 
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algorithm can be modified to allow larger adjustments in the PI settings. However, this is 
avoided because it creates sudden kick in the control action and oscillation may creep in.   
 

In the last simulation and even in the earlier ones, it is observed that the PI setting 
were continuously updated even that the closed-loop response was completely inside the 
performance envelope. This means that the model was detecting bound violation during 
that period. There are two explanations to this behavior. One is that the model makes 
wrong prediction due to modeling errors, another is that the true plant dynamics will 
violate the bound in the future if the PI settings were kept fixed at their last values. 
However, these violations disappear as time goes on because the PI settings change 
continuously.   It is found that the second explanation is more common.  
 

 
 

Fig. 9. CSTR  feedback response to disturbance step change using kc=10 and τI=10. 
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Forced Evaporator Example 
 

A forced circulation evaporator is shown in Fig. 11. The process is originally 
proposed by Newell and Lee 

 
[20] and is modeled as follows: 

 
Fig. 10. CSTR  feedback response to disturbance step change using kc=30 and τI=1. 
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(13) 

 
where C1 and C2 are the input and product compositions, respectively and P2 is the 
operating pressure (kPa). F1 and F2 are the feed and product flow rates (kg/min), 
respectively. F4 and F5

 

 are the vapor and condensate flow rates, respectively (kg/min). 
M is the liquid holdup in the evaporator (20 kg) and W is a constant (4 kg/kPa). The 
liquid level in the separator is considered well controlled by manipulating the product 
flow rate. Therefore, the flow rates are given as follows: 
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(15) 
 
 
 

(16) 

 
where P100 is the steam pressure (kPa). F200 (kg/min) and T200 (oC) are the flow and 
temperature of the cooling water, respectively. UA is the product of heat transfer 
coefficient and the transfer area (6.84 kW/K) and Cp is the heat capacity of the cooling 
water (0.07 kW/kg min). F3 is the recycle flow rate (20 kg/min).  λs1 is the latent of 
steam at saturation condition (36.6 kW/Kg min) and λs2 is the latent heat of evaporation 
of water (38.5 kW/kg min). F1 is fixed at 10 kg/min and its temperature T1 is fixed at 40 
oC. The cooling water enters the cooler at 25 oC. The initial steady state value for the 
outputs is C2 = 13.5747% and P2 = 28.0865 kPa which corresponds to C1 = 5%, P100 = 
200 kPa and F200 = 200 kg/min. The control objective is to maintain the outputs within 
desired values using P100 and F200 as manipulated variables. This control problem is 
selected because of its strong cross-loop interaction. The diagonal element of the relative 
gain array is around 0.5. In this paper, P100 is used to regulate P2 and F200 to regulate C2

 

. 
Both manipulated variables are constrained between 0 and 400. 

 The initial values for the PI settings for each control loop is determined by 
reaction curve (RC) method [20]. In this case, the PI settings for the first loop, i.e. 
F200C2, are found to be kc = 88.8 and τI =31 min, and those for the second loop, i.e. 
P100P2, to be kc = 8 and τ I = 24 min.  Alternatively, the proposed tuning method can 
be used to find better values for the PI control parameters. In order to utilize the 
proposed tuning method the performance specifications should be designed as explained 
in the next paragraph. 
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The nominal performance envelope for set point change is designed such that it 

limits the overshoot to 8% for the first 30 samples, brings the response to within ±5% of 
the final steady state for the following 40 samples and finally to within ±1.1% for the 
last 40 samples for the first output. For the second output the envelope limits the 
overshoot to 5% for the first 30 samples, brings the response to within ±2% of the final 
steady state for the following 40 samples and finally to within ±1.1% for the last 40 
samples. The nominal performance envelope for disturbance rejection is designed such 
that it limits the overshoot to 5% for the first 30 samples, brings the response to within 
±2.0% of the final steady state for the following 40 samples and finally to within ±0.5% 
for the last 40 samples for both outputs. A sampling time of 1 min is used in all 
simulation. In all simulations that follow, the profile of the manipulated variables will be 
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Fig. 11. Evaporator process. 
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excluded to save space. It should be noted also that the modeling equations (Eqs. 12-16) 
are used twice during simulation. They will be used to simulate the plant upon which the 
control law is implemented. In addition, they will be used by the tuning algorithm to 
predict the plant future outputs. In the second case, imperfect model will be considered.  
Specifically, the overall heat transfer coefficient, U for the model is considered 20% 
larger than that for the plant. In addition, the constant M for the model is considered 10% 
less than that for the plant. This procedure is applied to all the simulations that follow 
and is expected to create model-plant mismatch, which makes the control task more 
critical. Note that in all the following simulation, τ I = 1/kI is shown in the figure and Pw

 

 
is fixed at 10 for fair comparison. 

Figure 12 demonstrates the feedback response to set point change of [1%, 0 kPa] as 
deviation from the initial steady state. The dashed line in Fig. 12 shows the feedback 
response using fixed PI settings found via reaction curve method. The resulting response 
is acceptable except of sluggishness observed in the pressure response. The light solid 
lines in Fig. 12 represent the performance specification. The tuning method is triggered 
at the beginning due to set point change and then re-triggered at the 120th sampling 
instant due to threshold violation. Fig. 12 illustrates the process response obtained from 
using the tuning method with the RC settings being used as the initial guess for the PI 
parameters. It is clear that the adapted concentration response is slightly affected because 
it is originally within its performance specification. The adapted pressure response 
delivered faster recovery to the set point.  The kc2 profile shows initial step increase and 
similarly the τI2

 

 profile demonstrates initial step decrease.  These variations are the 
source for the improved performance of the second output (pressure). The profile of the 
PI settings for the first loop shows no adaptation until the second triggering period.  The 
performance envelope in the second triggering zone is tighter and moreover the 
concentration response suffers from slow drift. This in turn made the model to detect 
continuous violation of the lower bound. This explains the motive for the continuous 
adaptation of the PI settings for the first loop in the last 75 sampling instants.    

 Figure 13 demonstrates the feedback response to three consecutive set point 
changes of [+2%, +2 kPa],  [+1%, +1 kPa] and [+2%, +2 kPa] as deviation from the 
initial steady state. Evidently, the tuning method managed to speed up the pressure 
response. The concentration response seems to be acceptable and requires no further 
improvement through adaptation. Despite this fact, the PI settings for the first loop were 
continuously adapted especially for the second half of the simulation. Nevertheless, the 
adapted concentration response reacts marginally to these variations because C2

 

 has 
slow dynamics. However, due to cross-loop interaction the changes in the first loop 
parameters are reflected on the second output performance as manifested by the minor 
oscillation occurred in the third set point change zone.    

Figure 14 depicts the closed-loop response to step disturbances while the process is 
operating at the initial steady state. Specifically, T200 for the plant is taken 5 degrees less 
than that for the model.  Similarly, T1 for the plant is taken 5 degrees less than that for  
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Fig. 12. Evaporator response to set point change, (a-b) light solid: bound; dashed: non-adapted PI; solid: 

adapted PI. 
 

 
 

Fig. 13. Evaporator response to consecutive set point changes, (a-b) light solid: bound; dashed: non-
adapted PI; solid: adapted PI. 
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the model. These step changes are introduced after 5 minutes from the start of the 
simulation. The adapted PI response is shown in Fig. 14 by the solid line. In this 
simulation, the RC settings are used as the initial guess. As one can see, the main effort 
of the tuning algorithm was dedicated to speed up the response of both outputs. As a 
result shorter settling time was observed. This was achieved at the cost of notable 
oscillation in the pressure response. Fortunately, the oscillation diminished eventually 
because kc1 and τI1
 

 were modified in the correct direction.  

 

 
 

Figure 15 illustrates the feedback reaction to set point change of [1%, 1 kPa] 
followed by a step disturbance introduced at time = 120 minutes from the start of the 
simulation. The disturbance employed here is a step change of –5oC in T200 and +5 oC 
in T1. Note that the input upsets are introduced into the plant but not into the model. 
This implementation procedure is considered here to simulate real practice and to 
create model-plant mismatch. This mismatch is additional to that produced by the 
parametric uncertainty mentioned earlier in the example. This situation is expected to 
make the control problem more difficult. It is clear that the adapted response 
outperforms the non-adapted one in the sense of faster dynamics. Initially, the 
parameters of the second loop were modified properly, which resulted in faster 
response for the pressure. Later on, i.e. in the disturbance rejection zone, the 

 
Fig. 14. Evaporator response to disturbance step change, (a-b) light solid: bound; dashed: non-adapted 

PI; solid: adapted PI. 
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parameters of the first loop were altered to reduce the overshoot and speed up the 
concentration response. Interestingly, this alteration also brought in its positive effect 
on the second output, which made the adaptation of the second-loop parameters 
unnecessary. It is noted that the parameters of the first loop started changing even 
before triggering for disturbance rejection. The reason behind this phenomenon is 
discussed earlier in the CSTR example. 
 
 

 
Conclusion 

 
This paper presents an automatic tuning method for the online adjustment of 

the PI settings. The method is based on the general tuning guidelines and on real-
time performance specification. The method requires a model representation of the 
plant. However, any form of modeling equations is sufficient to implement such a 
tuning strategy. One attractive feature of the tuning method is that it is 
computationally tractable. The PI parameters are tuned by means of simple algebraic 
manipulations where other tuning methods require iteration, root finding, or 
optimization. Another feature of this method is that it relies on intuitive guidelines 
instead of complex theoretical analysis, which a practitioner finds it difficult to 
understand. The proposed method is implemented on two process models in the 

 

Fig. 15. Evaporator response to set point change followed by step disturbance, (a-b) light solid: bound; 
dashed: non-adapted PI; solid: adapted PI. 
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presence of modeling errors. The results of the simulations revealed the ability of the 
proposed tuning method to adjust the PI settings online such that much enhanced 
control performance can be obtained. The investigation also revealed that the 
proposed method is successful even if different initial guesses for the PI settings are 
used. The method has a single adjustable variable, which is the prediction horizon. 
The selection of this variable is straightforward.  
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 مواصفات زمنية متواصل لنظم التحكم النسبي التكاملي مبني على آليتنغيم ّ 
 

 عماد الدين مصطفى
 قسم الهندسة الكيميائية 

 كلية الهندسة ، جامعة الملك سعود
 ، المملكة العربية السعودية١١٤٢١، الرياض ٨٠٠ص ب 

 
 )م ۰۲/۰٥/۲۰۰٤وقبل للنشر في  م،۱۳/۰٤/۲۰۰۳في  م للنشر قد(

 
يهدف هذا البحث الى تطوير خطة تنغيم متواصلة لمعاملات نظم التحكم النسبي . ملخص البحث

تستخدم الخطة . التكاملي لتحقيق كفائة مرغوبة مبنية على مواصفات في النطاق الزمني
لك لتقدير التغيرات الزمنية المستقبلية و تحديد المقترحة نموذج رياضي للعملية التصنيعية و ذ

تستخدم الكمية القصوى لمخالفة المواصفات مع التوجيهات . كمية مخالفة  المواصفات المرغوبة
العامة للتنغيم في تشكيل نظم و مجموعات المشوشة لإيجاد قيم معاملات نظم التحكم النسبي 

وفير تنغيم آلي مستمر لمعاملات نظام التحكم تطبق هذة الخطة بطريقة متواصله لت. التكاملي
كما تتميز الخطة بالبساطة و قلة الحسابات الرياضية . على نطاق واسع من ظروف التشغيل

حيث لا تتطلب الخطة  نماذج خاصة للنظم الدينامية بالإضافة الى اعتماد الخطة على عدد بسيط 
تطبيق بالمحاكاة على نمادج رياضية أوضحت نتائج  ال. من المجموعات و القوانين المشوشة

لعمليات كيميائية نجاح الخطة في توفير كفائة في الأداء مقارنة بتلك التي تقدمها نظم التحكم 
 .     النسبي التكاملي التقليدية
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