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Abstarct. This paper addresses the control problem of starting up a non-isothermal CSTR. The startup problem 
is of dual objectives. One objective is to fill up the tank and the other is to achieve certain reaction conversion.  
The two objectives compete with each other because each has a different gain sign. Consequently, standard PI 
algorithms may not perform well. In fact, nonlinear control algorithms can be tested for the startup control 
problem. However, to avoid computational complexity brought in by such nonlinear controllers, Fuzzy Logic 
Control (FLC) can be a simple and suitable alternative. Specifically, FLC algorithm is applied for the start-up 
problem and its performance is compared to that of PI controller with gain scheduling. 
 

Nomenclature 
 

A Surface area, ms 
A 

2 
Constant predefined matrix for the FLC algorithm 

a,b,c Tuning parameters for FLC algorithm 
C Concentration of species i, mole/l i 
C Feed concentration of species A, mole/l Af 
CA, C Concentration of species A and C respectively, mol/l c 
CpA, Cp Heat capacity of specie A and B, J/mole B o

D 
C 

Reactor diameter, m 
E Activation energy 
e Error signal 
F1, F Feed flow rate of pure component A, and B respectively, l/min 2 
F Total outlet flow rate, l/min 
h Heat transfer coefficient for air, kJ/mair 2 o
k

C min 
r, k Reaction rate constant, and Pre-exponential factor,  l/mole min o 

kc, k Controller gain and its reference value co 
kc

u, kc Upper and lower values for kl 
k

c 
p, k Process gain and its reference value  po 

25 
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   nR, nf
Q 

 Number of rules and number of fuzzy sets, respectively 
Rate of heat loss to the surrounding, kJ/min 

R Gas constant, 0.008314 kJ/mole K 
T, T Reactor temperature, and ambient temperatureamb , o

T
C 

f , T Feed Temperature, and Reference temperature, ref o

t 
C 

Time, min 
u Manipulated variable 
V, V Fluid volume (holdup), and Reactor volume, l r 

 
Greek letter 

δ Location of the membership function center 
κ Design parameter for the GS method 
∆Η Standard heat of reaction, kJ/mole 
µ Membership function 
τ Process time constant 

 
 

Introduction 
 
Chemical processes show dynamic behavior during start-up, shutdown, and when upsets 
occur under steady state conditions. Mathematical modeling, simulation, and control of 
these processes are relatively difficult, because of the nonlinear nature of these processes 
and the activation and tuning difficulties of the controllers. Most of the reported control 
problems in the literature deal with disturbance rejection or changing set point. Only few 
efforts were reported dealing with the automatic start-up of continuous chemical 
processes from zero initial condition. Automatic start-up is similar in concept to finding 
the optimal input profile for batch processes.  The start-up problem considered here 
introduces an integrator state, which makes the control problem more challenging. 
Moreover, the control problem has one degree of freedom, therefore, the control design 
must handle all objectives or ignore some of them and suffer from the consequences. 
 
 Standard proportional plus integral (PI) control to start-up a non-isothermal 
CSTR was investigated [1]. Simple and straightforward schemes of activation were tried, 
in an attempt to achieve maximum possible conversion and to attain smooth operation 
during start-up1. The importance of this control problem lies in the difficulty of 
triggering the controller and the re-tuning of the PI settings during start-up from zero 
initial condition. The startup operation consists of filling the reactor starting from an 
empty condition to a maximum level. During the startup operation it is also required that 
the chemical reaction reaches maximum conversion manifested by the concentration of 
the product. Therefore, the control objective for the CSTR is dual. In this case, the feed 
flow, which is the only available manipulated variable, needs to be regulated to achieve 
both objectives. The first control objective, i.e. reactor filling, requires a positive 
controller gain, while the second control objective, i.e. reaction conversion, requires a 
negative controller gain. The difficulty thus relies on the changing sign of the process 
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gain for the same manipulated variable. Due to the non-linearity of the process behavior 
during start up, linear PI controllers were found inadequate without the aforementioned 
strategies. Therefore, we will investigate the application of nonlinear control algorithms 
for the start-up problem. Specifically, Fuzzy Logic Control [2, 3] (FLC) will be 
examined in this paper. This type of control algorithm is chosen because it retains some 
of the characteristics of the PI controllers. This is manifested in the sense of 
independence of FL control law on the model equations. In addition, FLC is 
recommended for controlling processes requiring human knowledge which makes it 
particularly suitable for the start-up control problem. 
 

FLC is based on the original work of Zadeh [4] on fuzzy set theory. Its first 
implementation to control physical processes was proposed by Mamdani [5, 6].  Since 
then, several other applications were reported [7-12]. Recently, FLC received more 
interest due to its successful application to important industrial systems [13]. Since FLC 
can adapt itself to changing situations, it can outperform conventional PI controllers for 
unstable dynamics and nonlinear systems. In contrast to model-based controllers, FLC is 
known as knowledge based controllers, that does not require a mathematical model of 
the process at any stage of the controller design and implementation. In many cases, the 
phenomenological model of the control process may not exist or may be too expensive in 
terms of computer processing power and memory, and a system based on rules of human 
knowledge may be more effective. In this case, FLC is a simple alternative to model-
based advanced controllers.  

 
However, there are many factors that limit the spread of such controller such as a 

lack of understanding of the technology, limited application experience [14]. Many 
Engineers may not understand the mathematics involved. Moreover, its tuning requires 
adjustment of many parameters.   

  
The contribution of this paper is of two parts. One part is to address the control of a 

startup operation of a CSTR, which as mentioned earlier is not given good attention in 
the literature. The other part is to make use of the ability of modifying the FLC to 
incorporate known process knowledge. For example, the nonlinearity of the process 
arising from the gain sign change can thus be transformed into fuzzy sets. The latter can 
be easily incorporated in the fuzzy logic control law by simply modifying its Rule Base. 
Therefore, in this paper the feasibility of applying FLC to the control problem of 
automatic start-up of a non-Isothermal CSTR will be investigated. Comparison of the 
FLC with that of conventional gain-scheduling algorithm will also be investigated. Ease 
of implementation and practicality will be addressed as the basis for evaluation.  

 
The paper is organized as follows. Next section covers the process description and 

its mathematical model. The following section presents the design procedure of FLC 
algorithm. Then, simulation tests will be shown in a following section to investigate the 
performance of the proposed control algorithms. The final section outlines the 
concluding remarks. 
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Non-isothermal CSTR Model 
 
A liquid phase chemical reaction of the form of: A+B  C+D with known kinetics 

[2, 3] is taking place in a  non-isothermal CSTR as shown in Fig. 1. The CSTR is 
equipped with an overflow and a total feed (pure A and pure B).  The two feeds are equi-
molar at 0.1M. The reactor represents an existing lab-scale process at the departmental 
laboratory. Various design parameters are listed in Table 1.  This process is chosen as a 
test example for its varying dynamics character as it operates in two different stages. The 
first stage is the start-up where the process operates in a semi-batch mode during which 
the liquid holdup behaves like an integrator system. The second stage is the steady state 
where the process operates in a continuous mode during which the liquid holdup is 
constant at its maximum. The complete dynamic model for the process is given as 
follows [1]: 

 

 
 
Table 1. Process parameters 

Parameter Value Parameter  Value 
T 24 f o R C 0.008314 J/mol oK 
T 29 amb o CpC 75.25 J/mol A o

V
C 

2.8 l r Cp 175.3 J/mol B o

h
C 

2.5 J/mair 2 o CpC min 78.2 J/mol C o

∆H 
C 

-1.5 kJ/mol Cp 103.8 J/mol D o

D 
C 

15 cm C 0.1 mol/l Af 
T 24 ref o CC 0.1 mol/l Bf 
E 48.32 C 0.0 mol/l Cf 
k 109.31l/mole min o C 0.0 mol/l Df 

 

F, T, CA , CB , CC , CD

F1 , Tf  , CAf

F2 , Tf  , CBf

 
 

Fig. 1. Schematic of the non-isothermal CSTR. 
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2A
1 Af A r A

2c
c r A

dV =F +F -F     
dt
dVC

=F C -FC -Vk C     
dt

dVC
=-FC +Vk C   

dt

 

(1) 
 
 
(2) 
 

 
4

i i 1 Af A 2 Bf B f ref
i=1

4
2

i i r A       
i=1

d V( C Cp )T=(F C Cp +F C Cp )(T -T )-
dt

F( C Cp )T-Vk CΔH-Q

∑

∑
 

 
(3) 

Where: 
 

kr = k0
Q = A

 exp(-E/RT) 
s hair (T-Tamb

 
) 

As

 

 denotes the reactor surface area. The material balances for component B and D are 
omitted since they are identical to those for component A and C respectively. Equations 
1-3 simulate the CSTR dynamics during the start-up stage. The original model [15, 16], 
which is validated against the lab data, consists of three sets of model equations. Each 
set corresponds to a specific stage of the process startup operation. For example, the first 
stage is filling up, the second is approaching steady state and the third is operating 
steadily. In this paper, the process model equations are lumped as given by Eqs.1-3 for 
simplicity. However, to simulate the dynamics of the first stage, the outlet flow, F, is set 
to zero and therefore, the reactor holdup varies with time. In the second and third stages 
when the holdup reaches its maximum value, the outlet flow is set equal to the sum of 
feed flow rates. 

Due to this interesting dynamics, the static gain and time constant change 
substantially with operating conditions as shown in Fig. 2. The figure demonstrates the 
open-loop response of the product concentration for two different step changes in the 
inlet flows starting from zero initial conditions. The corresponding steady state operating 
conditions of the process are listed in Table 2.  Note that the reaction temperature at the 
zero initial steady state is taken as the room temperature. As Fig. 2 shows, at large step 
change in the feed flow the product concentration reaches a small value, while at a 
smaller step change in the feed flow rate, the product concentration reaches a higher 
value. This means, the product concentration decreases with increasing the start-up flow 
rate. Therefore, the static gain relating the product concentration with feed flow rate is 
negative. On the other hand, the static gain relating the reactor holdup to the feed flow 
rate is positive, which is obvious. The phenomena of varying process gain with operating 
conditions and the fact that the controller has dual objectives with different gain signs 
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during startup are the main motives to implement and test the fuzzy control algorithm. 
The process static gain and time constant at different operating conditions are listed in 
Table 2. These process parameters were estimated by reaction curve tests except those at 
the initial condition. Since the process responds as a ramp function to step changes 
induced at the zero initial condition, reaction curve method cannot be used to identify the 
process parameters. Instead, the process gain is identified by impulse test [1]. 
Alternatively, the process gain can be calculated from a linearized version of the model 
equations 1-3. The model equations will be used for simulation purposes and not in the 
design of the FLC algorithm. 
 
Table 2. Steady state operating conditions 

Variable Initial Min. throughputs Max. yield Max. throughputs 
F 0.0 l/min 1 0.01 l/min 0.1 l/min 1 l/min 
F 0.0 l/min 2 0.01 l/min 0.1 l/min 1 l/min 
C 0.1 mol/l A 0.0062 mol/l 0.0174 mol/l 0.03676 mol/l 
C 0.1 mol/l B 0.0062 mol/l 0.0174 mol/l 0.03676 mol/l 
C 0.0 mol/l C 0.044 mol/l 0.0326 mol/l 0.01324 mol/l 
C 0.0 mol/l D 0.044 mol/l 0.0326 mol/l 0.01324 mol/l 
V 0.0 l 2.8 l 2.8 l 2.8 l 
T 24 o 27.7 C o 26.5 C o 25.04 C o

k
C 

0.011 p - 0.1382 - 0.0338 - 0.0039 
τ - 8 5 1.35 
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Fig. 2. Open loop response to two step changes in the feed flow rate. 
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Fuzzy Logic Control Algorithm 
 
 The basic FLC loop is shown in Fig. 3 consists of three major sequential steps, 
namely Fuzzification, Inference engine and Defuzzification. Fuzzification transforms a 
crisp value (real-value) into a member of fuzzy sets, while defuzzification transforms the 
fuzzy output determined by the inference engine into a crisp value. The inference engine 
is the decision-making engine (control law). In the following, the development and 
design of each step is discussed in detail. Hereafter, by input we mean controller input, 
i.e. error and/or error velocity signal and by output we mean the controller output, i.e. 
manipulated variable. 
 

 
Fuzzification 
 The input signal of the controller, which is a real-value variable is fed to the 
fuzzifier. In the fuzzifier, the input is converted into a member of a certain fuzzy set. The 
fuzzy set is usually represented by a membership function as shown in Fig. 4. The 
membership function can have any symmetric or non-symmetric geometric shape.  
 

DefuzzifierInference
EngineFuzzifier Processer

+
_

yu

Fuzzy Logic control Block

 
Fig. 3. Block diagram for the FLC algorithm. 

 

Universe of Discourse

1.0

0

LPSPSNLN ZE

 
 

Fig. 4. Example of fuzzy set. 
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Common difficulties exist in this step. The selection of the shape and number of the 
membership functions, the location of their center, i.e. where fuzzy set has a maximum 
value, and the size of the universe of discourse are not clear. Moreover, the common 
FLC design involves at least three different groups of fuzzy sets, each of which 
corresponds, to a different process variable. For example one group is used for the error 
signal, ∆e, another for the velocity of error signal, ∆e, and another for the controller’s 
output (manipulated variable), u.  The latter is used in the defuzzification step. In this 
paper we try to overcome the above problems. First we use only one group of fuzzy sets 
for all the three process variables. To achieve this, the universe of discourse is unified so 
that it spans the interval [-1,1]. In this case, the value of each process variable should be 
scaled properly to fit the specific interval. Discussion of the scaling issue is given under 
the tuning section. Furthermore, gaussian and sigmoidal shapes are considered for the 
membership functions. Five such functions, denoted as Large Positive (LP), Small 
Positive (SP), Zero (ZE), Small Negative (SN), Large Negative (LN),  are used with the 
locations of their centers is as shown in Fig. 5. Gaussian shape is selected because it is 
continuous function and can be easily coded in a digital computer. The number of fuzzy 
sets is chosen arbitrarily, however increasing it will increase the number of control rules 
at the benefit of little improvement. The relative location of their center will be adjusted 
automatically using our proposed tuning method as discussed later. 

Specifically, the fuzzy sets shown in Fig. 5 are assigned the following mathematical 
functions: 
 

1)75.0x(20LP e1
1)x( µ≡

+
=µ −−  

 
(4) 

2
2

SP ))5.0x(20exp()x( µ≡−−=µ  (5) 

3
2

ZE )x20exp()x( µ≡−=µ  (6) 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Process variable (e, 

∆
e, 

∆
u)

LPSPZESNLN

 
 

Fig. 5. Typical fuzzy set used. 
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4
2

SN ))5.0x(20exp()x( µ≡+−=µ  
 

(7) 

5)75.0x(20LN e1
1)x( µ≡

+
=µ +  

 
(8) 

 
In these equations x is the process variable. Note that these functions are unified for all 
process variables used in the work, namely the error (e), the error velocity (∆e) and the 
manipulated variable velocity (∆u). Therefore, in this controller phase, the membership 
degree of a specific input value, i.e. e or ∆e, for all fuzzy sets can be numerically 
computed via direct substitution in equations 4-8. 
 
Inference engine 
 
 Inference engine is the heart of the FLC algorithm where the control action is 
formulated. Specifically, it describes the output of the controller for all input signals 
combination. It consists of several fuzzy set rules known as Rule Base as shown in Table 
3 [17]. Generation of such rules is the difficult part of the FLC design. 
 

There are different methods for generating the Rule Base. In this paper, we choose 
to design the rule base according to desired response of the process because it the most 
intuitive for many control practitioners. The description and reasoning of each rule is 
explained in Table 3 [17], which basically describe a generic feedback response. Note 
that the AND command is a common fuzzy rule operation, which mathematically 
implies [17]: 
 

))( , )(min()( AND )( xxxx BABA µµ=µµ  (9) 
 

At this phase of the controller algorithm, given a value for the input signal, the 
degree of fulfillment of each rule in the rule base set is determined. The rule base in 
Table 3 is given in fuzzy logic terminology. Using equation 9, the degree of fulfillment 
of the base rules can be computed mathematically as shown in the fourth column in 
Table 3. Note that the first index of µ is the label for the membership function as in 
equations 4-8. The second index indicates the rule number. The degree of fulfillment of 
the rule base is known as the conclusion or the result of the rule base. The process in 
which these conclusions are calculated is known as inference. Membership function for 
the output with a non-zero degree of fulfillment is considered fired. In standard FLC 
algorithms, all fired functions are then combined using superimposing technique [17]. 
The combined set is known as the inferred controller output as shown in Fig. 6. The 
inferred output (new geometrical shape) is then converted into a crisp value using the 
defuzzifier. The calculated crisp value is the numerical value for the manipulated 
variable.  
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It should be noted that the rule base in Table 3 is a generic one that works for most 
positive feedback loops. One can further modify or can add more rules to capture certain 
known behavior of the process such as non-linearity or constraints. For example, the 
results of the rules are reversed when implemented. The reason for reversing is that the 
process has negative gain. After reversing the rule results, the process can not be started 
up from zero initial condition since the process requires a positive gain at that point. For 
this reason, the following rules are added: 

 
R26: If e is LP and V is ZE then ∆u is LP 
R27: If e is SP and V is ZE then ∆u is LP 

R28: If ∆e is LP and V is ZE then ∆u is LP 
 
Here V is the liquid holdup. Note that a single membership function, i.e. ZE, is used to 
fuzzify the process variable V. The ZE fuzzy set for V is designed to span the interval 
[0,0.01]. The latter region means that a value for V in that region indicates empty tank 
conditions. Note that it is necessary for start-up to use these three additional rules so that 
at the beginning of the simulation the total fired positive rules outweigh the total fired 
negative rules. When the holdup value comes out of the ZE region, the negative rules 
start outweighing the positive rules producing lower feed flow, but leading to the desired 
product concentration. 
 
Defuzzification 
 
In this step, the combined output fuzzy sets are then converted into a single crisp value. 
Usually it is equivalent to finding the weighted average value for the combined sets. In 
standard FLC applications, the combined set is new geometric shape say µout. Hence, 
finding a weighted average is similar to determining the geometric center. In this paper, 

µout

Universe of Discourse for u
 

 
Fig. 6. Example of output fuzzy set. 
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we alternatively calculate the weighted average numerically using the results of Table 3: 
 

R f

R f

n n

j,i i j,i
j=1i=1

k n n

j,i j,i
j=1i=1

μ (e,Δe)δ A

u =
μ (e,Δe)A

∑ ∑

∑ ∑
 

 
 
 
 
 
 
(10) 

  
Where nR is the number of rules and equals 28 in this paper, nf is the number of 
membership functions and equals 5 in this paper, δ i is value for the location of the center 
of µi.. The value of δ i is pre-calculated and fixed as shown in Fig. 5.  A is nR x nf

 

 pre-
calculated matrix, which identifies which membership function is included in each Rule. 
For example, row 1 of matrix A, which is assigned for Rule 1, contains 1 at the first 
column and zeros elsewhere. The same logic is carried out over the remaining rows.  

It should be emphasized that the control output, u computed by equation 10 at a 
certain sampling time k is taken to be in the velocity form. Velocity form is more 
suitable for non-linear systems as discussed next. In non-linear systems, the new 
equilibrium value for uss that brings the output to the desired steady state value may not 
be known beforehand.  Thus, it is difficult to locate uss

 

 in the universe of discourse as the 
center for the ZE membership function. However, when ∆u is used, zero value will 
always be the equilibrium point around which ZE can be built.  

Tuning method 
 

Tuning a fuzzy linguistic controller to changing process and environment dynamics 
can be accomplished in several different ways [17]. However, these procedures are 
cumbersome. In addition, there are no clear guidelines on how these procedures affect 
the closed-loop response. In this paper, we adopt a simpler method. The scaling factors 
for the input and output signals are used as the tuning parameters. As will be seen in the 
examples, these factors have direct and clear effect of the closed-loop response. These 
factors are used to scale the process variables so that they fit the universe of discourse 
domain used in Fig. 5. Specifically, the scaling factors for the error, error velocity, and 
output velocity are se = a/sp, sde = b/sp and sdu = c∆um respectively. For servo control 
problems, sp is the difference between the set point and the steady state value for the 
controlled variable. For regulatory control problem, sp is the set point value. ∆um

 

 is the 
difference between the maximum and minimum allowable values for the manipulated 
variable. Therefore, a, b, and c are the tuning parameters. Therefore, changing the value 
for a, b, or c is equivalent to stretching or expanding the universe of discourse of the 
fuzzy sets shown in Fig. 5. This idea of normalizing the fuzzy set domain is initially 
proposed by Qin and Borders [18]. 
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FLC algorithm 
 

The following steps explain the FLC control algorithm used in this paper. 
Set a = b = c = 1.At any sampling time, k do: 
Step1: scale the error and the error velocity signals (e (k), ∆e (k)) via multiplying 

them with se and sde. 
Step2: Compute the degree of membership of e(k) and ∆e(k) to the five 

membership functions using equations 4-8. 
Step3: Calculate the conclusions of the Rule base as given in Table 3. 
Step4: Calculate the control action using equation 10. Scale the computed value by 

multiplying with sdu.  
Step 5: Implement the control action, set k = k + 1 and go back to step 1 

 
If the control performance is poor, adjust the value of a, b, or c. We have found that 
increasing the value of a increases the speed of response and eliminates offset. 
Increasing the value of c penalizes the manipulated variable moves, thus produces 
sluggish response. The parameter b has almost similar effect as a has, but with less 
magnitude. However, tuning b should be avoided because large values for it make the 
controller sensitive to steady state noise (numerical error in case of simulations). 
 

The FLC implemented here has a single control loop with dual objectives. By dual 
objectives we mean two controlled variables connected to one manipulated variable. The 
controlled variables are the product concentration and the reactor volume. Conceptually, 
this dual objective procedure is similar to split range control scheme.  
 

Gain Scheduling Scheme 
 

Adapting the controller gain with a changing process key (auxiliary) variable is 
known in general as gain scheduling (GS). The conventional way of gain scheduling is 
switching between different sets of local linear controllers, each of which is designed for 
a specific region of the process operating condition space.  Gain scheduling can have 
different formulations, one of which can be given as an interpolation of two given 
extreme values for the controller gain [15]: 
 

kc(t) = (1- q) kc
u  + q kc  (11) l 

 
where kc

u and  kc
l

 

 are the upper and lower values for the controller gain respectively and 
q is an interpolation parameter, which can be given as: 

q = exp (-κ |e(t)| ) 
 
where κ is a design parameter. This interpolation criterion is used to provide smooth 
transition between two different values for the gain. In the present work, the extreme 
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values for kc

 

 are determined by their magnitude irrespective to their signs. If the process 
model is available or its gain can be estimated on-line, a programmable or model gain 
scheduling (MGS) can be formulated as follows [19]: 

       
)t(k

kk
)t(k

p

poco
c =  

 
(12) 

 
Here kco and kpo are the reference values for the controller and process gains 
respectively. The idea is to keep the overall gain of the closed-loop system, i.e. the 
product kco kpo, constant. It is necessary to keep the overall gain less than unity, 
particularly at the crossover frequency, to ensure stability [20]. The gain scheduling 
technique is repeated here for comparison purposes. Note that the gain scheduling 
method will be implemented on the standard PI controller. The GS function is thus to 
update the PI controller gain, kc, online according to Eq. 11 or 12. Unlike the FLC 
algorithm, the gain-scheduling method has a single controlled output, which is the 
product concentration, Cc

 

. The other output, i.e. reactor holdup, will be handled 
implicitly through gain scheduling. For example, the controller gain obtained from either 
Eq. 11 or 12 will be positive initially, which will allow reactor filling. The controller 
gain will then change sign as the reaction proceeds.  

Simulation Results 
 

The control objective of the process is to fill up the reactor and the same time to 
bring the controlled variable Cc at the desired value of 0.0326 mole/l.   This will be 
approached during start-up, i.e., starting the reaction from zero initial conditions, and 
during disturbance rejection. The manipulated variable in this case is the inlet flow rate 
F1. The second inlet flow, F2 will be maintained through ratio control of obvious ratio of 
F1:F2 = 1:11. Both F1 and F2 are constrained between 0 and 1 l/min. Therefore, in this 
paper ∆um
 

 =1 l/min. A sampling time of 1 min is used in the simulations hereafter.  

The closed-loop response for set point change for Cc from 0.0 to 0.0326 mole/l is 
shown in Fig. 7. The figure compares the performance of GS, MGS and FLC algorithms. 
For GS method, κ=50, τI = 2 min and 50 ≤ kc ≤ –120 are used. The PI parameters are 
determined previously [1]. The value of κis determined via trial and error. It is found 
that κ has to be at least equal 50 for the PI algorithm with GS to work well. For MGS 
method, kco = 50, kpo = 0.011 and τI = 2 min are used. Note that the PI settings are 
determined previously [1], while the value for kpo is taken from Table 2 at zero initial 
condition. The value of kp is computed online using a predefine correlation [1]. In that 
correlation, kp  is made a function of F1. For FLC method, a=b=1 and c = 0.5 are used. 
These values were sufficient to provide acceptable feedback performance. As Fig. 7 
demonstrated, all the control algorithms managed to start-up the reactor from zero initial 
conditions. Apparently, the GS and MGS managed to fill the tank readily. The gain-
scheduling methods managed to fill up the reactor rapidly because they possess 
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relatively large positive controller gain at the beginning of the startup point. This 
positive gain resulted in plentiful feed flow rate. On the other hand, the FLC has two 
competing objectives, one with positive gain and the other one with negative gain. This 
situation created smaller positive action manifested by modest feed flow rate and 
consequently slower filling of the tank.  However, as far as the primary controlled 
variable is concerned, the three methods demonstrated somewhat similar performance. In 
fact, the FLC delivered relatively faster response with minor overshoot. Figure 7 also 
illustrates identical responses for F1 and F2

 

. This is because of the obvious 1:1 ratio 
control. 

 
It is interesting to test the effectiveness of the proposed control algorithms for the 

startup problem with the presence of process upsets. Figure 8 shows the startup response 
from zero initial condition. In this case, step disturbance in CAf of magnitude of –0.025 is 
introduced at time = 10 minutes from the start of the simulation. The plot of F2 is 
omitted here because it is identical to F1. The tuning parameters for all controllers are 
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Fig. 7. Feedback response for Startup operation. 
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the same as before except the parameter c for the FLC algorithm, which is adapted to 
0.75. All the proposed algorithms managed to fill up the reactor and bring the product 
concentration to the desired value even in the presence of upset. The GS method 
provided the best closed-loop performance in terms of no overshoot.  It is clear from Fig. 
8 that the feed flow rate (F1) had to be increased after the upset was introduced to 
compensate for the loss of moles of reactant A. Eventually both feed flow rates (F1 and 
F2) go to zero. In this operation, the second feed flow is equal to the first one because of 
the 1:1 ratio controller and the reaction stoichiometry is 1:1 for all reactants and 
products. Therefore, the reduction in CAf

 

 will create abundance of unreacted species B, 
which will dilute the concentration of the product, i.e. species C.  As a result, both feed 
flow rates has to be zero to maintain the desired concentration of the product. 
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Fig. 8. Feedback response to startup operation with upset in CAf. 
 



Emad M. Ali and A.M. Abu Khalaf  

 

40 

 
Figure 9 depicts the feedback response for the start-up operation while the first fed 

flow undergoes a sudden drop of –0.05 l/min at time = 10 minutes after the start-up of 
the simulation. This type of upset is common for our experimental setup and may occur 
due to drop in head pressure of the head tanks. It can be handled through feed-forward 
controller, however it is considered here to examine the performance of the proposed 
control algorithms. Figure 9 shows the closed-loop response for the GS and FLC 
methods only. The MGS response is shown in Fig. 10. In practice, the control algorithms 
manipulate the feed flow indirectly through adjusting the valve opening of the specific 
feed stream. Therefore, Fig. 9, shows also the plot for the valve opening of the first feed 
stream (V1) in order to make the effect of upset on F1 clearer. Here, the flow-valve 
relation is considered spontaneous with unity gain. The tuning parameters for all 
controllers are the same as those used in Fig. 8. As shown in Fig. 9, the valve opening is 
increased after the flow reduction due to pressure drop has been introduced. The 
expansion in valve opening is necessary to compensate for feed flow losses. However, to 
avoid diluting the product, the feed flow rates are turned off. Figure 10 shows the 
performance of the MGS algorithm for the same control problem. The figure shows how 
the MGS fails to maintain the desired concentration and creates oscillatory response at 
steady state. At steady state, the feed flow becomes zero at which the gain correlation 
produces a positive static gain. The gain sign is incorrect especially when the reactor 
holdup reached its maximum value. This situation creates unstable feedback behavior. 
MGS requires the continuous measurement of an auxiliary variable to update the gain 
scheduler. In this case F1 is used to identify the zero initial condition, which is 
misleading because zero value for F1

 

 dose not necessarily identifies the zero initial 
condition. In fact, V=0 accurately indicates the zero initial condition. However, the liquid 
holdup, V, can not be used as the auxiliary variable because it has only two steady state 
values, i.e. 0 or 2.8 l. This result demonstrates clearly how the MGS performance can 
deteriorate in the presence of modeling error or uncertainty in the gain prediction.  

The simulations in Figs. 8 and 9 illustrate that filling the reactor tank and keeping 
the product concentration during upset in the feed conditions can be achieved only at 
zero feed flow rates. This means no production rate, which is undesirable. To resolve 
this problem, the control objective may need to be revised. However, this cannot be 
handled in the case of GS and MGS algorithms. In the FLC case, meeting an additional 
control requirement can be enforced through adding more rules to the rule base given in 
Table 3. For example, the rule base is augmented by the following rule: 

 
R29: If e is ZE, V is ZE and F1

 
 is ZE then ∆u is SP 

The simulation of Figs. 8 and 9 are repeated using the FLC algorithm with the 
above additional rule. The result is shown in Fig. 11. It is clear that, using the additional 
rule, the controller managed to bring the feed flow to 0.1 l/min at steady state. However, 
the control objectives, i.e. achieving desired product concentration and maintaining 
positive feed flow at steady state, competes each other.  Because of this competition, the 
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attained steady state value for the product concentration is lower than its  
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Fig. 9. Feedback response to startup operation with upset in F1. 
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Fig. 10. Feedback response for startup operation with upset in F1 using MGS method. 



Emad M. Ali and A.M. Abu Khalaf  

 

42 

desired set point. Nevertheless, the FLC tuning parameters can be adjusted to trade 
between the two variables. This is not sought here because the main idea is simply to 
show the flexibility of the FLC algorithm to incorporate additional requirements.      
 

The closed-loop response for rejecting a disturbance of magnitude of –0.02 mole/l 
in CAf while the process is operating in the maximum yield condition and fully filled 
tank is shown in Fig. 12.  Although this simulation does no belong to the startup problem 
investigated here, it is included for the sake of completeness. Note that the plot for the 
hold-up response, V, is omitted because it is kept constant at the maximum. The control 
parameters for each algorithm are the same as before except that -50 ≤ kc ≤–150 is used 
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Fig. 11. Feedback response for startup with disturbances using modified rules for FLC. 
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for GS method. If the same bounds on kc as previously shown are used, GS method 
cannot perform well. It is clear that GS method had the best performance among the 
others because it delivers the smallest down-shoot and fastest recovery to steady state. 
However, our evaluation for these methods will not be based on their performance 
because the latter can be improved through tuning. Nevertheless, our evaluation will be 
based on their implementation issues. For example, MGS method has no manual tuning 
parameter or feedback to compensate for modeling error. On the other hand, GS method 
has another weakness. For example, it requires prior knowledge of the reasonable range 
for the controller gain.  Moreover, two different sets for the controller gain were 
necessary to run the GS controller. For example, one set is used for set point change and 
the other for disturbance rejection. In addition, changing the value of κ has an 
unpredictable effect on the GS performance. 
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Fig. 12. Feedback response for disturbance step change at fully filled tank. 
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FLC requires no pre-calculation of reasonable values for specific tuning parameters 
like in the GS case or specific process parameter like in the MGS case. FLC used here is 
found easy to implement and to tune. One group of fuzzy sets was used for e, ∆e, and ∆u 
and for both the servo and regulatory problems.  The unification of the fuzzy set domain 
is achieved through normalizing the process variable. The scaling factor for the error 
velocity, b, is found to be of little effect on the closed-loop performance. While a, the 
scaling factor for the error, is found to play the same rule that kc

 

 plays in a standard PID 
controllers. Specifically, increasing the value of a, speeds up the response and eliminates 
offset. Similarly, increasing the value of c, the scaling factor for ∆u, increases the 
controller aggressiveness. The synthesis of the control law based on the base rules can be 
formulated to incorporate any additional requirements or objectives. For example, in Fig. 
11, three objectives were merged in one control loop. One disadvantage of the FLC is 
the length of fuzzy rules to be developed for each control loop. Although developing 
such rules can be straightforward, it needs to be comprehensive to provide correct and 
smooth control action. 

Conclusions 
 

The control problem of starting up a non-isothermal CSTR from zero initial 
conditions is addressed. Due to the non-linearity of the process during start up, the 
control problem has a dual objective, each of which requires different gain sign. For this 
reason, a standard PID algorithm may fail. Therefore, fuzzy control algorithm was tested 
and compared to PI controller with two gain-scheduling methods. Specifically, standard 
and model-based gain scheduling methods were investigated. The proposed control 
methods delivered acceptable feedback performance. Overall, the standard gain-
scheduling method delivered the best feedback performance. However, several 
implementation issues can differentiate between these methods. Although the standard 
gain scheduling method is simple, it requires prior information about the limiting values 
for the proportional gain. Moreover, two different sets for the limit of the controller gain 
should be used for different control objectives.  In addition, the controller is tuned by 
trial-and-error procedure without apparent guidelines. The model-based scheduling 
method relies on a process model or programmed correlation based on an auxiliary 
measurement to update its gain. Therefore, it is very sensitive to the model accuracy or 
uncertainty in the programmed correlation. The fuzzy control algorithm presented here 
has a simplified design and tuning procedures through using a unified domain for the 
fuzzy sets. In addition, tuning is achieved through adjusting two parameters based on 
apparent general guidelines. Furthermore, the synthesis procedure of the FLC algorithm 
is more flexible and consequently any additional known process knowledge or 
nonlinearity can be incorporated easily in the controller law.  
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 التحكم العشوائي لبدء تشغيل مفاعل الخلط المستمر الكيميائي
 
 

 عماد الدين مصطفى علي ، عزيز أبو خلف
 قسم الهندسة الكيميائية 

 كلية الهندسة ، جامعة الملك سعود
 ۱۱٤۲۱ـ الرياض  ۸۰۰ب .ص

 المملكة العربية السعودية 
 

 )م ۲٦/۰٥/۲۰۰۳م،وقبل للنشر في ۰۷/۱۰/۲۰۰۲استلم في ( 
 

. يتناول البحث مسألة التحكم أثناء بدء تشغيل مفاعل كيميائي ذو الخلط المستمر. البحث  صملخ
تتميز مسألة التشغيل بأنها ذات هدفين مزدوجين مما يجعل عملية التحكم أثناء التشغيل مهمة 

أحد الهدفين هو ملئ المفاعل و الهدف الأخر هو الحصول على أعلى تحول كيميائي . معقدة
الكيميائية المتفاعلة علما بوجود تنافس بين الهدفين  بسبب إختلاف إشارة المحصل للمواد 

لذلك .  و لهذا السبب فان التحكم النسبي التكاملي قد لا يؤدي وظيفته بكفائه. النهائي لكل منهما
حيث سيتم دراسة تطبيق . سوف يتم تطبيق نظم تحكم لاخطيه لعملية بدء تشغيل الأتوماتيكي

حكم العشوائي و الذي يتميز ببساطته و سهولة تطبيقه و قلة العمليات الحسابيه التي نظام الت
كما سيتم مقارنة نتائج تطبيق نظام التحكم العشوائي مع نتائج التحكم النسبي التكاملي . يتطلبها

 .  المدعوم بطريقة المحصل النهائي المجدول
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