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Abstract. Mobile phone users rely only on their intuition to evaluate the quality of service provided by their 
network operator. In this paper, we propose an output-based objective method to rate the speech quality in 
mobile phones. This rating, when averaged over time, will be useful in comparing between different mobile 
phone networks. Moreover, the rating could be incorporated into the calls tariff of mobile phones. 
 

Here, A time-delay multilayer neural network is used to rate the speech quality after a proper training 
stage.  The training input set consists of speech features (such as linear predictive coefficients LPC and per-
frame energy). The training target is a customized per-frame speech quality measure. We performed extensive 
simulations using the proposed method. We use speech samples from simulated channels, real GSM channel 
and from the more elaborate CTIMIT database. These simulations show that the proposed method can predict 
the speech quality within reasonable accuracy. 
 
Keywords: Speech quality, mobile network, CTIMIT database, time-delay neural network. 
 

Introduction 
 
Today's communications market is witnessing unprecedented high penetration rate of 
mobile phones. This has energized the competition between mobile network operators. 
Seeking customer satisfaction is a top priority to reduce customer "churn". Now more 
than ever, customers are looking for better quality of services.  
 

On the top of his list, the customer is demanding good speech quality. Many 
customers believe that they are being overcharged for calls with speech quality that is 
less than acceptable. It is desirable that a customer has an objective means to measure 
the speech quality. A "smart' handset that can give rating for the speech quality will be 
essential in comparing between the different operators. Ultimately, it is conceivable that 
a call is charged based not only on airtime but also on speech quality assessed by the 
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handset. Speech quality tests are also essential for the network operator for fault 
detection and network optimization.  

 
Traditionally, speech quality in mobile phones is measured through the perception 

of an expert listener (subjective test). This method, however, is expensive and of limited 
use. The alternative method is an automated one. A reference speech signal is 
transmitted through the network to a mobile unit connected to a computer for objective 
speech quality analysis. There have been many objective test algorithms [1,2]. Recently, 
S. Voran [3] proposed a new simple objective test which has high correlation (in the 
range of 0.84-0.98) with the mean opinion score (MOS) subjective test.  

 
We wish that the user got the privilege of obtaining a quantitative quality measure 

of the telephone calls; traditionally this is restricted to the mobile network engineers. 
Here we propose a new method for speech quality rating without the need for a 
reference signal. This is called output-based speech quality assessment. Due to its 
difficulty, this problem has been tackled by only a limited number of researchers.  Jin 
and Kubichek [4] presented a vector quantization method to assess the speech quality, 
and obtained correlation with MOS in the range of 0.68-0.9. They conjectured that 0.9 
will be the limit for any output-based algorithm. 

 
We agree partially with these expectations, especially if one does not use 

complicated high order Markovian models for the speech. This, however, does not imply 
that the 0.9 correlation is a sharp end.  From a mobile user point view, a continuous 
quality scale may not be of utmost necessity; one with discrete number of levels (e.g. 
excellent, good, fair, poor and bad) may be sufficient.  

 
Our approach here is to use a time-delay multilayer neural network [5] and train it 

with features extracted from noisy speech samples.  The target of the network is an 
objective quality score, formulated in such a way to fit into the neural network 
framework. The obtained results are promising, which suggest more elaborate 
experimentation to have better generalizations. 

 
The organization of this paper is as follows. The next section is a review of the 

main approaches to speech quality assessment. Then we describes our approach to 
output-based speech rating. The experimental work section contains simulation results 
obtained for different speech samples in different environments, including the CTIMIT 
database, which is obtained from the standard TIMIT database as transmitted through a 
cellular network. Main conclusions and future work are outlined in the last section. 
 

Speech Quality Assessment 
 
There are two approaches to measure the speech quality [1], subjective and 

objective approach. In the subjective approach, a group of people listens to speech 
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samples and each individual is asked to give quality scores. The average score represents 
the mean opinion of the listeners. A widely acceptable method is the mean opinion score 
(MOS). ITU-T [2] recommends five levels of quality, "excellent", "good", "fair", "poor" 
and "bad" and explains a procedure to determine MOS by listening tests under 
laboratory conditions. This method is usually applied in the evaluation of different 
codecs. A more sophisticated measure is the diagnostic acceptability measure (DAM), 
which is used for evaluating medium to high quality speech. All subjective tests are, 
however, not practical for the continuous evaluation of speech in mobile units. 
 

The alternative is to use objective approaches [2]. These approaches range from 
simply measuring the bit error rate to the more complex schemes of modeling the human 
hearing system. Currently the objective approach is widely used by many network 
operators. Generally, in the objective approach, a known reference speech sample is 
transmitted through the network. The received speech sample along with the "clean" 
copy is preprocessed to ease the comparison. The preprocessing, or feature extraction, 
includes filtering, time-shift adjustment, normalization and framing. In the literature, 
different features have been proposed. Linear predictive coding (LPC) and its variants, 
such as the log-are ratio (LAR), and short-term DFT are examples of these features. 
Comparison is made between the features of the received signal and the clean copy. The 
comparison result is then mapped into MOS score.  

 
In [3] S. Voran proposed a log-spectral-error-based method along with frame-

energy plane partitioning for the objective test. His method is relatively simple and 
reaches 0.74 up to 0.98 correlation with the MOS. For online assessment speech quality 
by the mobile handset, any reference-based method is difficult to use since it requires the 
repeated transmission of a known speech sample.  
 

Output-based Approach 
 
Basic approach  

Our approach is based on the idea that a human can judge the quality of impaired 
speech sample, within certain precision, without listening to the original speech sample. 
Therefore, we propose a time-delay neural network technique that can find the speech 
quality score by learning. The learning phase consists of presenting impaired speech 
samples (after pre-processing) along with their quality score.  To make the input to the 
neural network of reasonable size, we divide the speech signal into short adjacent 
(possibly overlapping) frames. We extract certain features from each frame and arrange 
them in a vector, which we call a training vector. We should associate a speech quality 
score (or target) with each training vector. For obvious reasons, we cannot find a 
subjective quality score for an individual frame. In our work, therefore, we rely on the 
objective quality score, which can be calculated per frame.  The overall speech quality 
score is the sum (or average) of the frames' score. 
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We train a time-delay neural network with the feature vectors. Thus if X(n) is the 
feature vector of the nth  frame, the nth

 
 input to the network, χ(n), is  

χ(n)={X(n-m), X(n-m+1), ..., X(n), ..., X(n+m)} 
 

Information about the adjacent frames is needed to exploit the dependency between 
them. In addition to the present vector X(n), χ(n) contains m previous vectors and m future 
vectors. In simulated channels, errors are injected randomly in some frames. We use LPC 
coefficients or short-term DFT feature extraction methods. The training target will be 
simply the number of errors in the present frame.  
 
Training for the digital cellular systems 

The digital cellular systems are susceptible to different types of impairments, such as: 

• Noise injection 
• Echo 
• Speech muting 
• Robotic voice 
• Ping Pong 

 
These types are the major causes of degrading the speech quality in mobile 

environments. Some of these impairments, such as echo and noise injection, are 
common in almost all speech communication channels. Other impairments are due to the 
digital nature of wireless system. The speech muting could result from a damaged frame 
or due to an outage in the transcoder channels. Robotic voice is caused by erased frames. 
The decoder substitutes the erased frame with previous frames, causing the robotic-like 
voice. In severe channels, more frames are damaged causing the ping pong or bottle 
smashing sound.  
 

For a real cellular channel, we use the log-area ratio (LAR) parameters as derived 
from the LPC coefficients. It is known that LAR-based objective measure has the 
highest correlation with the MOS among all LPC- parameters variations [1]. Let T(n) be 
the target associated with the input χ(n). This target should reflect some kind of per-
frame quality measure of the nth frame. Initially, we define T(n) as the Euclidean 
distance between the feature vector (LAR parameters) of the input noisy frame, X(n), 
and the clean frame, Xc

 
(n), i.e.  

T(n)=||X(n)-Xc
 

(n)||                                                   (1) 

Frame-Energy Plane Partitioning. Inspired by the work of Voran [3], the target, T(n) of 
the neural network is modified from (1) according to the loudness of the input/output 
frames. We first find the energy of the reference frame and received frame, Ec(n) and  
E(n), respectively. The energy of signal x is defined as 
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                                          (2) 

 
 
where xi

 

 is the frequency-domain sample of the speech frame for the N point FFT.  The 
target is calculated according to the following "frame-energy plane portioning"  (as 
shown in Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Frame-energy plane partitioning. 
 

• T(n) is as in (1) if E(n) and Ec

• T(n)=35 if E(n)> 19 dB and E
(n)> 17.4 dB (loud frames).  
c(n) <17.4 dB (noise frame), or if Ec

• T(n) =0 otherwise (silent frames) 

(n)> 19 dB 
and E(n) <17.4 dB (muted frame). 

 
This partitioning serves as a rough approximation of the human speech perception. 

More sophisticated partitioning is also possible. 
 

We use different speech samples to extract the training pairs (χ(n), T(n)) from all 
the frames. A time-delay multilayer neural network is then trained with these pairs. 
After the training phase is completed, we test the performance of the trained network 
using new speech samples. Sometimes it is useful to post-process the network's output 
before obtaining the objective quality test as discussed previously. 

 
Experimental Work 

 
In our experiments, we used three types of channels. The first one is a simulated 

simple noise injection channel. The second channel is a typical GSM channel. The third 
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channel is a real cellular phone network as described by [6]. The speech data collected 
from this third channel is called CTIMIT database. 

 
Simulated channel 

We recorded several 5-second speech signals as uttered by different male speakers. 
Then we sampled each speech signal at a rate of 8000 sample/second.  A speech signal is 
divided into 100 frames of length 50 ms each. The noise is injected in three arbitrarily 
chosen "damaged" regions. These regions correspond to the following frames: frame 3-
10, frame 35-44, and frame 77-86. A frame contains 400 speech samples. For a damaged 
frame, we select at random N out of the 400 samples to be injected with (added to) 
additive Gaussian noise. The noise has zero mean and unity variance. N is called the noise 
level and it will take the values 10, 40, 100 and 200. The target, T(n), of the nth

 

 frame 
represents the number of injected errors relative to the number of samples in the frame. 

Training with LPC coefficients. In the first part of this experiment, we extract the LPC 
coefficients of the 11th

 

 order from each frame. We arrange these coefficients in a vector 
X(n) for training the neural network as discussed in the previous section. The clean and 
the noisy speech samples, along with their targets, are used to train the network. 
Different 2-layer time-delay neural networks are tried. The number of taps used is 3 and 
5. Fig. 2 shows the output of the 5-taps network with 7 hidden nodes due to noisy 
speech input. We notice that the general trend of the output moves in parallel with the 
desired output. However, for the noise-free regions we observe deviation from this 
trend. One can explain that by the inherent overlap between the noise and speech. Thus 
the network will sometimes confuse a clean speech with noise. 
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Fig. 2. Per-frame quality score (solid line) and its prediction by the neural network  (dashed line). LPC 

coefficients are used as the network input. 
Training with short-term DFT. In the second part of this experiment, we use the 
magnitude of the short-term DFT as a feature vector.  A 50-ms frame size is considered 
with 50% overlapping. Hanning window is used to taper the frame. The resolution in the 
frequency domain is 300 points.  
 

Again we performed several training passes with the magnitude of the short-term 
DFT as the input vector and T(n) as the target or desired output. As we did with the LPC 
coefficient case, we employed different 2-layer time-delay neural networks with 
different number of taps. Figure 3 shows the output of a 2-layer neural network with 5 
taps in the input and 9 hidden nodes. Here we notice more agreement with the target 
value. The problem of the noise-free region is mitigated to some extent. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Per-frame quality score (solid line) and its prediction by the neural network  (dashed line). The 

Short-term DFT is the network input. 
 

For comparison purpose between the LPC and short-term DFT features, we show 
Table 1. In this table, we compare the training MSE error with the testing error. The 
MSE error is defined as 

    (3) 
 

∑ −=
=

L
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where Y(n) is the neural network output due to the nth

Table 1 shows that both the LPC and short-term DFT features result in comparable 
performance with more preference to the short-term DFT. Moreover, increasing the 
number of taps in the time delay network can improve its performance. 

 input χ(n), and L=100, is the 
number of frames in a speech signal.  

 
Table 1. MSE of different networks 

  LPC Coefficients Short-Term DFT 
 No. hidden nodes Train MSE Actual MSE Train MSE Actual MSE 
 7 .0057 .0098 4.0×10 .0053 -5 

9 .0074 .0074 1.8×10 .0393 -4 
12 .0065 .0065 1.9×10 .0135 -5 
15 .0051 .0052 2.1×10 .0092 -5 

 7 .0078 .0079 4.7×10 .0128 -4 
9 .0076 .0076 7.3×10 .0051 -5 
12 .0057 .0057 1.9×10 .0046 -4 
15 .0068 .0068 3.4×10 .0064 -4 

 
GSM-network channel 

In this part, we use collections of 5-second speech samples prepared by Ascom [7]. 
These speech signals correspond to one sentence, which is phonetically balanced and 
uttered by a male and female. The speech samples have different MOS quality levels, 
ranging from excellent to bad. Their distribution based on the quality is shown in Table 2.  
 
Table 2. Quality distribution of the training and testing speech samples 
Quality rating Training set Testing set 
Excellent 1 1 
Good 4 5 
Fair 4 5 
Poor 4 5 
Bad 3 4 
 

The preprocessing stage of the speech signal includes normalizing the long-term 
mean to zero and the variance to one. Simple correlation is used to align the received 
noisy speech with the original one.  

 
The sampling rate is 8000 sample/second and the frame size is 32 ms. Hanning 

window is used for each frame with 50% overlapping between frames. The LAR 
parameters are obtained for each frame and then the target value T(n) is computed as 
given in (1). We append the frame energy to the feature vector X(n). (Refer to Fig. 4.) 
Now we have a list of input/output pairs to train our 2-layer time-delay network. 
Different network structures are tried. For training, we used two training algorithms. The 
results obtained with each algorithm are given below. 
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Algorithm 1: Resilient Backpropagation [8]. This is a variation of the standard steepest-
descent backpropagation that avoids the "dead ends" of the sigmoid function.   
Algorithm 2: Bayesian regularization [9]. This is a Modification of the Levenberg-
Marquardt [10] training algorithm to produce networks that generalize well. It reduces 
the difficulty of determining the optimum network architecture.  
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Fig. 4. Flow graph for preparing the training set to the time-delay neural network. Area 1 corresponds to 

loud frames and Area 2 corresponds to muted or noise frames as defined in Fig. 1. 
In the training stage for both algorithms, we used 16 of the 5-second speech signals 

along with their associated per-frame targets T(n). Different numbers of hidden nodes 
were examined. We found that 7 to 10 hidden nodes generally result in good 
performance. The number of taps is 3. We also performed some experiments without 
time delay, however, the performance was not very impressive. 

 
Figure 5 shows the output of a 2-layer (10 hidden nodes) neural network, trained with 

Algorithm 1, due to a noisy input signal. In the MOS scale, this speech signal is rated as 
"fair". Figure 6 shows the output when we train the network with Algorithm 2. Here the 
speech signal is rated as "poor". One can see from both figures that the output fluctuates 
around actual per-frame quality score. As noted before, for the noise-free regions the 
prediction is less accurate due to he overlap between the noise and speech. It is possible, 
even for a human, to confuse some speech signals with noise. Since we rely on the 
overall (or average) score, these fluctuations would be averaged out as shown in 
correlation analysis. 
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Fig. 5. Per-frame quality score (solid line) and its prediction by the neural network  (dashed line) for 

speech through GSM channel. Algorithm 1 is used for training. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Per-frame quality score (solid line) and its prediction by the neural network  (dashed line) for 

speech through GSM channel. Algorithm 2 is used for training. 
 

The more standard way in comparing the objective tests is to find their correlation 
coefficients with known test measures. Here we find the correlation between some 
distance measures with the average per-frame actual speech quality score, Qa
 

, defined as 

(4) 
 

 
The following three measures are considered. 
 
Measure 1: The predicted quality, Qp

 

, which is the average of the neural network's 
output defined as 
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   (5) 
 
Measure 2: (Histogram.) We apply the features of a clean signal and find its output 
Yc(n). This output is quantized using a step of size 16 to get qc(n). Then we find the 
associated histogram vector, hc, of this quantized output. We repeat the same procedure 
to the noisy signal and obtain the quantized output q(n) and the histogram vector, h. The 
distance measure is defined as the Euclidean distance ||hc

 

-h||. Note that the clean speech 
signal could be different from the noisy one. 

Measure 3: (Transition Probability matrix.) We first obtain qc(n) and q(n) as described 
in Measure 2. We model qc(n) and q(n) as Markov processes. We calculate the first-
order transition probabilities matrices, Pc and P for the clean and noisy speech, 
respectively. The distance measure is defined as the Euclidean distance between the 
elements of the two matrices, ||Pc
 

-P||. 

Table 3 shows the correlation coefficients for the three distance measures with the 
average per-frame quality score. It is obvious from this table that Algorithm 2 has better 
generalization when the first distance measure is used. The training time and memory 
are, however, more exhaustive.  We see also that for a simpler training algorithm, 
Algorithm 1, the histogram and transition matrix measure could increase the correlation 
coefficient. On the other hand, if a time-delay network is not used, the best correlation 
found does not exceed 0.88. 
 
Table 3. Correlation Coefficients with different distance measures 

 Measure 1 Measure 2 Measure 3 

Algorithm 1 0.9294     0.9305     0.9503 

Algorithm 2 0.9491     0.9316     0.9268 
 
Cellular TIMIT (CTIMIT) database 

In this part, the speech samples used for the training and testing stages are taken 
from CTIMIT database [6].  CTIMIT is the cellular version of the well-known TIMIT 
phonetic database. TIMIT was established in a joint effort among the Massachusetts 
Institute of Technology (MIT), Stanford Research Institute (SRI), and Texas 
Instruments, Inc. (TI).  There are 630 speakers from 8 dialects US regions saying 10 
sentences each, 2 sentences were common for all, 5 were chosen from a list of 450 
phonetically balanced sentences selected by MIT, and 3 were randomly selected by TI.  
All speakers are adult with 30% female and 70% male.   
 

CTIMIT was developed under the Lockheed-Martin Sanders Inc. sponsorship in 
1996 by Kathy, Brown and Bryan [6]. They performed drive tests and recorded the 
transmitted TIMIT speech samples via a digital cellular system. Some of TIMIT speech 
files were missed from CTIMIT because of dropped-out call occurrences.   

Comment [1.م]:  Kathy L., Brown E. 
and Bryan George, “CTIMIT: A speech 
corpus for the cellular environment with 
applications  to automatic speech 
recognition”,  Proc. ICASSP95, p-p 105-
108, May 1995. 
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As a pre-processing step for the speech samples, we normalize the long-term mean 

and variance to zero and one, respectively, for both input and output speech signals and 
we removed any time shifts.  Using a sampling rate of 8000 sample/sec, we form 64-ms 
time domain frames with 512 samples/frame with 50% overlapped. As discussed in the 
last subsection, the LAR coefficients and frame energy are then extracted from each 
speech frame to form the input feature vectors X(1), X(2), …, X(N), where N is the 
number of frames in the speech sample. The ”customized” quality measure, T(n), of the 
nth

 

 frame is calculated according the frame-energy plane partitioning given in the 
previous subsection  (Please see Figure 4). Again we have the training se of the 2m+1-
tap time-delay network, (χ(n), T(n)), where 

χ(n)={X(n-m), X(n-m+1), ..., X(n), ..., X(n+m)} 
 

We performed three types of experiments based on the used speech samples. In the 
first experiment, we use speaker-dependent speech samples. The speaker is fixed and the 
pronounced sentences are varying. The second experiment uses text-dependent speech 
files, where different speakers pronounce a single sentence. The third experiment is the 
more general one where we have a mixture of speakers pronouncing different sentences. 
Our simulation results are presented in the following. 
 
A. Speaker-dependent speech samples. In this part, we have two speakers (two males 
and one female); nine different speech samples of each are selected. We train the neural 
network with the speech sample of one speaker.  A leave-one training method is used, 
where eight of the speech samples are used for training and the last sample is used for 
testing. We repeat this procedure leaving a different test sample each time until all 
samples are covered. The trained neural network gives the predicted quality score of 
each frame in the test sample. We average these scores to get the overall predicted 
quality score Qp 

 

(as defined in (4)). Therefore, for each speaker we have nine predicted 
quality scores corresponding to the nine sentences.  

We obtain the correlation between the predicted quality score, Qp, and the actual 
one, Qa (as defined in (5)). 

 

These experiments are carried out for 3 and 5 taps and the 
LPC orders are 4,5 and 6. In Table 4 we show the correlation results averaged for the 
two male speakers and the one female speaker. Clearly this table indicates high 
correlation between the neural network quality prediction and the actual one. There is no 
major different between 3 and 5 taps. However, the LPC order should be maintained 
small.  

Table 4. Correlation between the actual quality score and the neural network prediction    for the 
speaker dependent case. 

  LPC Order 
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 Taps 4 5 6 

Male Speakers  
3 0.88 0.86 0.65 

5 0.89 0.92 0.56 

Female Speaker  
3 0.91 0.92 0.81 

5 0.93 0.91 0.82 
 
A detailed score result is also shown in Fig. 7.  The actual quality score is shown as 

compared with the neural network prediction for the nine speech samples uttered by one 
of male speaker. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Comparison between the actual quality score and the predicted one. The LPC order is 5. 
 

B. Text-dependant case. Here the  text of the speech is fixed, and the speakers are 
different. We have four different texts. Each text is uttered by nine speakers. The first 
two texts are uttered by a group of male speakers. The other two texts are uttered by 
females. Again a leave-one training/testing method is used with the time-delay neural 
network. Table 5 shows the testing results averaged separately for each speaker gender. 
We can see that the lower LPC orders perform better.  This agrees with the conclusion 
reached by others as mentioned in the introduction.  
 
Table 5. Correlation between the actual quality score and the neural network prediction for the text-

dependent case. 
  LPC Order 

 Taps 4 5 6 

Male Single Speech 
3 0.86 0.84 0.46 
5 0.90 0.78 0.67 

Female Single Speech 3 0.95 0.92 0.85 
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 5 0.93 0.95 0.90 
 

It can be observed from the previous tables that the network predicts the speech 
quality with high accuracy for female rather than male samples. Single speech (text-
dependent) case has the best prediction performance. There is a practical application for 
the single speech test where standard words (or phrases) can be transmitted (from any 
speaker) and a system (pre-trained to this phrase) can rate the received speech quality 
without referring to the original one. 

C. Speaker-and-text-independent case. This case is the most general one where we 
collected speech samples of different sentences as uttered by different speakers. A 
training algorithm with better generalization (Resilient Back Propagation) is used to get 
the best fit to the training data set. We use 63 different speech samples, which include 
the previous samples in case A and B along with other samples. Similar to the 
previous cases we use a leave-one training/testing strategy. As shown in Table 6, the 
obtained results have less correlation than two preceding special cases, but still within 
accepted ranges.  
 
Table 6. Correlation between the actual quality score and the neural network prediction   for the 

speaker-and-text-independent case. 

 LPC Order 

Taps 4 5 6 

3 0.72 0.87 0.68 

5 0.76 0.80 0.71 
 

The 5th

 

 order LPC-based quality prediction gives the best correlation compared to 
the higher or lower orders. Figure 3 shows the difference between the actual Euclidean 
distance and the simulation output for the data set samples consisting of 9 speech files of 
mixed text and speakers. 
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Fig. 8. Comparison between the actual quality score and the predicted one for the speaker-and-text-

independent case. The speech samples are the same used in Fig. 7. 
 

Conclusion 
 

In this paper, we studied the problem of speech quality rating using only the output 
speech signal without the need to the reference signal. A time-delay multilayer neural 
network is trained to automatically perform the speech quality rating. A customized per-
frame quality score is introduced to make the training possible. For the simple simulated 
channel, the task was simple and the performance is remarkable. However, for the actual 
GSM channel the problem is more difficult. Training should consider many possible 
forms of noise. Nevertheless, the obtained correlation reached 0.95 for the small speech 
sample size used in our experiment.  
 

For the CTIMIT database, which contains much more speech samples, we consider 
three cases. The first case deals with a speaker-dependent speech signal.  The second 
case is restricted to the text-dependent speech signal.  The third case considers a mixture 
of different speakers and different texts. The first two cases gave very high correlation 
(above 90%) between the actual quality score and the predicted one. In the more 
practical case, the third one, the trained neural network achieved also good performance 
(above 80% correlation). However, as expected, the performance in this case is less than 
the other two special cases. 

 
One can be sure that the output-based speech assessment methods cannot reach that 

of the input/output (reference signal) methods. The Output-based speech quality 
assessment is a difficult problem. Any algorithm will never be perfect since there is an 
overlap between noise and speech signals. For example, when a muted frame is 
received, it is difficult to decide if a silence occurs in the real speech or the GSM 
receiver made that mute to avoid annoying noise sound. 

 
This paper could well lead to an automated speech assessment mechanism in 

mobile phones and possibly in the IP protocol over the Internet. To reach a more 
conclusive result, a larger speech database is needed. However, this will make the 
training task more difficult. To make the training of the neural network more tractable, 
one needs to use different networks for different environments. Then the output of the 
networks is combined using a well-designed statistical method. Another extension to this 



                               Rating of Speech Quality in Mobile Phone Networks 

 

45 

research would be the utilization of the Markovian speech model for better 
distinguishing between the speech signal and noise. 
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 تقويم جودة الصوت في شبكات الهاتف النقال
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 )م ٢٩/١٢/٢٠٠١م،وقبل للنشر في ٠٥/٠٦/٢٠٠١استلم في ( 
 

يعتمــد مســتخدمو الهواتــف النقالــة علــى حدســهم الشخصــي لتقــويم جــودة الخدمــة المقدمــة مــن مشــغل  .ملخــص البحــث
 هذا التقـويم عنـدما يؤخـذ. في هذا البحث نقترح طريقة لتقويم الجودة في الهاتف النقال معتمدة فقط على الخرج. الشبكة

أضف إلى ذلك أن هـذا التقـويم يمكـن .  شبكات الهاتف النقال المختلفةله المتوسط عبر الزمن سيكون مفيداً للمقارنة بين
 .أن يدخل في حساب تعرفة المكالمة الهاتفية
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هنــا نســتخدم شــبكة تــأخير الوقــت العصــبية ذات الطبقــات المتعــددة لعمــل التقــويم لجــودة الصــوت، وذلــك بعــد 
وقـدرة  LPCمثل معاملات التنبوء الخطي (وت تتكون معطيات التدريب من خصائص الص. مرحلة مناسبة من التدريب

قمنـــا بعمـــل تمثيـــل حاســـوبي موســـع باســـتخدام . الجـــودةوهـــدف التـــدريب هـــو نـــوع معـــدل مـــن أنـــواع قيـــاس ). الإطـــار
قاعـدة بيانـات  حقيقيـة بالإضـافة إلى GSMواسـتخدمنا عينـات صـوت مـن قنـاة محاكـاة وقنـاة  . الطريقة المقترحـة

CTIMIT  هذا التمثيل الحاسوبي أن الطريقة المقترحة بإمكا�ا التنبؤ بجودة الصوت بدقة معقولةالموسعة، و قد أوضح. 
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