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Abstract. In this paper a new technique is presented to design low order 2-D quadrantally symmetric IIR 
digital filters. This technique is based on two steps: First, the 2-D impulse response specification (Hankel 
matrix) is decomposed into k parallel sections, each consists of two cascaded SISO 1-D filters, using the 
singular value decomposition. Second, a singular perturbational model reduction algorithm is applied to the 1-
D filter to approximate the N-dimensional FIR into n-dimensional IIR filters, where Nn < . The 
approximation step is based on computing the eigenspaces associated with the large eigenvalues of the cross-
Gramian matrix coW . Examples are given to illustrate the proposed technique.  

 

Introduction 
 
Two-dimensional (2-D) digital filters are used in many applications such as image 
processing, seismic or geophysical signal processing, ultrasonic data processing and 
biomedical tomography. The design of two-dimensional (2-D) digital filters has been an 
active area of research for many years (see [1-6] and the references listed therein). Many 
techniques have been proposed to design the 2-D digital filters. Some of these techniques 
are based on transformations of 1-D filters [1-4] and others are based on various methods 
of optimizations or optimization in conjunction with transformation [5-7]. The 
technique, that received a considerable attention in the past few years, is based on 
singular value decomposition (SVD) (see [8-13]). The reason for this interest is because, 
it offers, as pointed out in [11,12], the following advantages. First, the design can be 
accomplished by designing a set of 1-D subfilters and, therefore, the well-established 
algorithms for the design of 1-D filters can be employed. Second, the stability issues of 
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the 2-D filter is guaranteed if the 1-D subfilters employed are stable, and third, the 1-D 
subfilters form a parallel structure that allows extensive parallel processing. 
 

The SVD can be applied to impulse response matrix (input-output data) as in [8-
10], or it can be applied to the sampled magnitude response as in [11-13]. In [8,9], a state 
space model of the separable-denominator transfer is obtained, while in [10], the state 
space representation is obtained by decomposing the 2-D impulse response matrix into 
two 1-D digital filters (single-input multi-output and multi-input single-output). 
Moreover, it was shown that an optimal decomposition could be obtained. In conjunction 
with the decomposition, in some of the previous work [9,10,12], the balanced model 
reduction is applied to the decomposed state space representations to obtain 
computationally efficient filters. 

 
In this paper, we propose a new and computationally efficient algorithm to design 

2-D digital filters using the SVD in conjunction with singular perturbation model 
reduction. This algorithm is different from the others algorithms in two aspects: First, the 
SVD is applied to the impulse response matrix (Hankel matrix) instead of the sampled 
amplitude response. This enables us to decompose the Hankel matrix into parallel 
sections of two 1-D filters in cascaded. Second, the real Schur form decomposition 
(RSFD) [14,15] is applied to these decomposed 1-D subfilters to convert them from high 
order FIR filters to reduced order IIR filters in the singular perturbed form. The 
conversion algorithm is based on finding the orthonormal eigenspaces that correspond to 
the large eigenvalues of the cross-Gramian matrix coW . This algorithm avoids 
computing the balancing transformation, which tends to have numerical difficulties and 
ill-conditioning problem [16].  
 

In Sections 2 and 3 we formalized the 2-D digital filters and we will show how the 
SVD is employed to decompose the 2-D filters into parallel branches of two 1-D filters 
in the 21 z and z  domains. Moreover, we see how we choose the decomposition index, 
which determines the number of parallel branches in our design. In Section 4 we 
describe how to use the real Schur form decomposition of coW to obtain the reduced 
order singular perturbed IIR digital filters from the decomposed FIR filters obtained in 
Section 3. Section 5 gives two design examples to illustrate the significance of the 
proposed technique. Conclusion is given in Section 6. 
 

Design Problem Formulation 
 

A 2-D FIR SISO digital filter with a rectangular support in the region defined by 
.,2,1i  ,2/Nn2/N iii =≤≤− ( iN  is assumed to be even), can be characterized by the 

transfer function  
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where  )n,n(h 21 is the impulse response of the filter. For the quadrantally symmetric 
filter, the impulse response is real and 
 

 )n,n(h)n,n(h)n,n(h )n,n(h 21212121 −=−=−−= . 
  

This type of filter has a separable denominator [9,10]. The transfer function 
)z,z(H 21 given in (1) can be rewritten as:  
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where )z(F 1i  and )z(G 2i  are transfer functions of 1-D subfilters in 1z  and 2z  
domains, respectively. k  is called the decomposition index and it is determined by the 
allowable error, as we will see later in the next section. Moreover, k  determines the 
number of parallel sections. Now, if these subfilters are FIR, then we have 
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where )n(f 1i and )n(g 2i are the impulse responses of the 1-D FIR filters in the 

directions 1n  and 2n  respectively. 
 

Equations (1) to (4) show that a quadrantally symmetric filter can always be 
realized using a set of k  parallel sections where the i P

th
P section is characterized by the 

impulse response )n(g)n(f)n,n(h 2i1i21i = . 
 

Now, having the impulse response specifications )n,n(h 21  at the support   
}2 ,1i  ,Nn0:)n,n{(S i21h =≤≤= , or in a matrix form: 
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The given 2-D specifications dH  can be decomposed into two 1-D specifications 

as GFHd =  by the singular value decomposition, where G and F  are two matrices of 
dimensions r)1N( ×+  and )1N(r +× , respectively. Now, each column of F ( row of G) 
represents the impulse responses of the SISO 1-D FIR filter in the 21 z and z , 
respectively. The decomposition and the approximation of 1-D FIR by IIR filters steps 
will be discussed in the following sections 
 

The Singular Value Decomposition (SVD) of the 2-D Impulse Response 
 

In this section, the SVD is applied to the impulse response of the 2-D quadrantally 
symmetric digital filter dH  as follows: 
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where [ ]r21 u..uuU = ,  [ ]r21 v..vvV =  and 
 

[ ]r21 .. σσσ=Σ . Assume that the singular values iσ ’s are appeared in a 
descending order, i.e., r21 ....... σ≥≥σ≥σ , then for 1kk +σ>>σ , where rk < , the 
matrix dH can be approximated as  
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this stage is [17] 
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Where  2. denotes the Euclidian norm of the matrix involved. The approximated 

Hankel matrix dH~  can be rewritten as 
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Notice here that, as we mentioned before, each column of F~ (row of G~ ) represents 

the impulse response of an FIR filter. In the next section, we use the singular 
perturbation technique to convert the high order FIR filters to low order IIR filters 
    

Singular Perturbation Approximation of FIR by IIR Digital Filters 
 
In this section, we use the singular perturbational model reduction [16] to convert 

the high order nonrecursive (FIR) into much lower order recursive (IIR) digital filters. 
The similarity transformation matrix T  that, converts the FIR to IIR digital filters is 
computed by finding the eigenspaces that span the large and the small eigenvalues of the 
cross-Gramian matrix coW . The eigenspaces are computed by using a very reliable and 
numerically stable algorithm known as real Schur form decomposition (RSFD).  

 
From (9), the transfer functions of the 1-D FIR filters in the 21  and zz  domains 

are characterized by 
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respectively. Thus, the design of 2-D digital filter can be accomplished through the 
following steps: 
 

1. From the transfer functions of the 1-D FIR filters, )z(F~ 1i  and )z(G~ 2i for 
k......,,2,1i = , find the state space representations ( D,C,B,A ).  

2. Apply the singular perturbational model reduction to approximate the FIR 
filters, characterized by )z(F~ 1i  and )z(G~ 2i , by IIR digital filters, characterized 
by ),z(H and)z(H 22i11i respectively. 

3. Connect )z(H and)z(H 22i11i  in cascaded as shown in Fig.1, the parallel 
realization of the 2-D digital filter. 

 
Before we explain how the first two steps are done, let us introduce the transfer function 

)z(HFIR in place of )z(F~ 1i and )z(G~ 2i for each i to overcome the notational problem 

involved in the subscripts of . and~,~ zGF Thus )(zH FIR is written as:  
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where              
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The state space ),,,( DCBA    in the controllable canonical form is given by 
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The purpose of the model reduction is to approximate the Nth order FIR by an 

thn order IIR digital filter, where Nn < through a similarity transformation T. 
Define the cross-Gramian matrix coW  [15,18] as 
 

  ∑
∞
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0k

kk
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Equivalently, coW  can be computed by solving the Lyapunov equation 
 

  0BCWAAW coco =+−          (16) 
 

Notice that coW is invariant under the similarity transformation [15,18] and the singular 
values iσ̂ , are given by 
 

  N ......., , ,2 ,1i      ,)W())z(H(ˆ coiFIRi =λ=σ               (17) 
 

Notice also that the singular value iσ̂  is different from the singular value of the 2-D 
Hankel matrix dH . The order n  is chosen based on a specified error bound, ε  which 
satisfies the inequality 
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where ∞ denotes the maximum absolute value of its frequency response and (z)Hr is 
the transfer function of the reduced order IIR filter and defined as 
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The state space representation of the singular perturbation reduced order IIR filter 

( rrrr D ,C ,B ,A ) will be defined later after we define the transformation T that 

transforms the state space representation, (14) into ( D~ ,C~ ,B~ ,A~ ). In the rest of this 
section, we will propose the algorithm that computes this transformation using the 
RSFD.  
 

Notice that, because of the special structure of the state space of the FIR filter (14), 
equation (15) is simplified to: 
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where OC  and ΩΩ  are the controllability and the observability matrices, respectively, 
which are defined as: 
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Notice also that A is nilpotent since .0A N = Therefore, equation (20) yields 
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Again, notice that the matrix coW is symmetric and is easily constructed. 

Therefore, there is no computation involved in finding coW .  
 

In the rest of this section, we summarize briefly, the singular perturbational model 
reduction algorithm in the following steps: 

 
i. For each branch, design the FIR filter characterized by equation (12). Find the 

impulse response, N ..,.......... ,1 ,0i ,hi =  and from which construct the state-
space representation ),,,( D C B A  as in (14). 

ii.  Construct coW as in equation (22) 
iii. Compute the real Schur form decomposition (RSFD) of coW  [15], 
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Λ=TWT co

T                    (23) 
 

where ) .,.......... , ,diag( N21 λλλ=Λ with the ordering 
 
    .................  N1nn21 λ≥≥λ≥λ≥≥λ≥λ +  
 

The desired order of   the IIR filter is determined based on the required error bound 
ε , which is defined by equation (18).  

iv. Partition the matrices TT and T such that  
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vi. The state space of the reduced model is defined as [16 ]: 
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So, the reduced order IIR filter characterized by equation (19) is an approximate to the 
full order FIR filter characterized by equation (12). Now, )z(H)z(H 11ir = if the first 
row of equation (13) is chosen and )z(H)z(H 22ir = if the second row of equation (13) 
is chosen. Repeat steps (i)-(vi) for k......,,2,1i = . See the parallel realization of the 2-D 
recursive digital filter in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Illustrative Examples 
 
 
 
 
 
 
 
 
Fig. 1.  Parallel realization of 2-D IIR (Recursive) digital filter. 
 

In this section, a 2-D circularly symmetric low pass and fan digital filters are 
designed to illustrate the effectiveness of the proposed technique in the decomposition 
and in the model reduction steps.    
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Example 1: Consider the 2-D circularly symmetric low pass digital filter which satisfies 
the following specifications: 
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corresponding impulse response smeared by Hamming window is given by 
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where )48/ji2cos( 46.054.0)j,i(W 22 +π+=  and )( xJ1 is the first order Bessel 
function of the first kind. The desired magnitude response, which will be considered here 
as an ideal magnitude response is shown in Fig. 2. 

 
 
 
Fig. 2. Ideal magnitude response of circularly symmetric 2-D low pass digital filter. 
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Following the procedure of Section 3, we apply the SVD to the resulted 49 x 49 

impulse response matrix. The singular values of dH are displayed. It is found that only 
25 of these singular values are nonzero, which means that the actual number of parallel 
branches is 25, but because of the smallness of some of these singular values, we can 
only retain 4 of them, i.e., choosing the number of branches k  to be 4 , gives a 
satisfactory result. So, this is the first approximation, reducing the number of parallel 
branches from 25 to only 4. The second approximation is to reduce the order of 
individual 1-D filters. This is achieved by the singular perturbation model reduction. So, 
if we follow the procedure of Section 4, the filters order is reduced from 48 to the values 
given in Table 1, where the first element in the bracket is the order of )z(H 11i , and the 
second element is the order of )z(H 22i in Fig.1. This choice, of number of parallel 
branches and the filters orders, gives a maximum passband error of 3.29% and maximum 
stopband error of 2.95%. The resulted magnitude response of the 2-D IIR filter (reduced) 
is shown in Fig. 3. 

 
Table 1.  Passband and stopband errors for the reduced order 2-D IIR digital filter 

No of Parallel 
Branches k  

Orders of the 
Subfilters )n,n( 21  

Passband 
Error PE  

    Passband 
Error SE  

 
4  )16,16(

15,15(),15,15(),14,14(

 
 

0.0329 
 

0.0295 
 

 
 

 
Fig. 3. Magnitude response of circularly symmetric 2-D IIR low pass filter.  
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Example 2. As a second example, consider the design of 6363×  fan filter with 

35.0)tan( =φ , using Kaiser window [7]. 
 
The ideal magnitude response of this filter is depicted in Fig. 4. Again the SVD of 

Section 3 is applied and 8 be chosen to isk . The exact number of the parallel branches is 
22. Applying the singular perturbation model reduction algorithm to the FIR filters of 
order 62, giving us IIR filters of orders listed in Table 2. The maximum passband and 
stopband errors are 3.04% and 3.13% respectively. The magnitude response of the 
reduced order 2-D IIR filter is shown in Fig. 5. 

 
 
Fig. 4. Ideal magnitude response of a fan filter of order 63 x 63. 
 
 
 
Table 2. Passband and stopband errors for the reduced order 2-D IIR  fanfilter 

No of Parallel 
Branches k  

Orders of the 
Subfilters )n,n( 12  

Passband 
Error PE  

Passband 
Error SE  

        
8  )20,36(),18,36(),20,36(),18,35(

)18,34(),17,33(),18,32(),16,31(
 

 
0304.0  

 
03130.  
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Fig. 5. Magnitude response of reduced order IIR fan filter.  
 

Notice here in this example, that the reduction in the 1n direction )band( 1ω is less 
than one third, while the reduction in the 2n direction )band( 2ω is about one half. This 
is expected because the filter band 2ω is extended along the whole band, while the filter 

band 1ω is extended to less than 
2
π , see Figs 4 and 5. It was noticed in [19] that for the 

two reduction algorithms, balanced model truncation (BMT) and Hankel-norm optimal 
approximation (HOA), the wider band we have, the less reduction we obtain. In [20], it 
was shown that BMT gives relatively smaller error at high frequency compared with the 
singular perturbation approximation. A comparison of error performance for the 
truncated model reduction and singular perturbation reduction for different types of 
filters was given in [16], Moreover, it was shown that, as in the BMT and HOA, the 
singular perturbation model reduction for the narrow passband filters can be reduced 
more effectively than the wider passband filters. This explains why the reduction in 2n is 
less than the reduction in 1n  directions in this example. 
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Conclusion 

 
In this paper, a new design technique for quadrantally symmetric 2-D recursive digital 
filters using SVD and real Schur form decomposition is presented. This technique is 
based on two steps: decomposing the 2-D impulse matrix, dH  into k  parallel sections, 
each comprising two 1-D FIR digital filters connected in cascaded. The FIR subfilters of 
order N are converted to lower order IIR filters of order k ......, ,2 ,1i where ,ni =  using 
the singular perturbational model reduction algorithm. 
 

The given examples had shown that the recursive magnitude response is very close 
to the ideal and the maximum errors in the passband and the stopband are relatively 
small. 
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تصميم مرشحات رقمية ثنائية الأبعاد ومتماثلة ربعياً باستخدام تحليل القيمة المفردة واختزال النماذج ذات 
 الاضطراب الشاذ 

 
 

 صل الظاهري رباح وا
 قسم الهندسة الكهربائية وهندسة الحاسبات ، كلية الهندسة ، جامعة الملك عبد العزيز 

 ، المملكة العربية السعودية  ٢١٥٨٩، جده  ٨٠٢٠٤. ب. ص
 

 )م ٢٢/٠٩/٢٠٠١في  للنشرم،وقبل ٠٧/٠٧/٢٠٠١استلم في ( 
 

قميــة ثنائيــة الأبعــاد ومتماثلــة ربُعيــاً كمــا أ�ــا قــدمت في هــذه الورقــة طريقــة مبتكــرة لتصــميم مرشــحات ر  .ملخــص البحــث
في المرحلــة  الاولى تحلــل مصــفوفة : تعتمــد هــذه الطريقــة علــى مــرحلتين. ذات رتبــة صــغيرة وذات اســتجابة نبضــية لا�ائيــة

بين الاستجابة النبضية للمرشح الأصلي إلى أعداد صغيرة من الفروع المتوازيـة ويتكـون كـل فـرع مـن مرشـحين رقميـين متعـاق
ذ وي بعــد واحــد والمرحلــة الثانيــة تتمثــل في تبســيط واختــزال المرشــحات الرقميــة ذات البعــد الواحــد والــتي عــادة مــا تكــون 
ذات رتبة عالية وذات استجابة نبضية �ائية إلى مرشحات ذات رتبة صغيرة وذات استجابة نبضية لا �ائيـة والغـرض مـن 

في .   سـابية وكـذلك تقليـل الـزمن الـلازم للإشـارات المـارة في هـذه المرشـحاتهذه الخطوة هو تبسيط وتقليل العمليات الح
 .     �اية البحث  قدمت أمثلة لشرح وبيان مزايا الطريقة المقترحة في هذا الورقة 
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