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Abstract. In this paper a new technique is presented to design low order 2-D quadrantally symmetric IIR
digital filters. This technique is based on two steps: First, the 2-D impulse response specification (Hankel
matrix) is decomposed into k parallel sections, each consists of two cascaded SISO 1-D filters, using the
singular value decomposition. Second, a singular perturbational model reduction algorithm is applied to the 1-

D filter to approximate the N-dimensional FIR into n-dimensional IIR filters, where N < N. The
approximation step is based on computing the eigenspaces associated with the large eigenvalues of the cross-

Gramian matrix Wco . Examples are given to illustrate the proposed technique.

Introduction

Two-dimensional (2-D) digital filters are used in many applications such as image
processing, seismic or geophysical signal processing, ultrasonic data processing and
biomedical tomography. The design of two-dimensional (2-D) digital filters has been an
active area of research for many years (see [1-6] and the references listed therein). Many
techniques have been proposed to design the 2-D digital filters. Some of these techniques
are based on transformations of 1-D filters [1-4] and others are based on various methods
of optimizations or optimization in conjunction with transformation [5-7]. The
technique, that received a considerable attention in the past few years, is based on
singular value decomposition (SVD) (see [8-13]). The reason for this interest is because,
it offers, as pointed out in [11,12], the following advantages. First, the design can be
accomplished by designing a set of 1-D subfilters and, therefore, the well-established
algorithms for the design of 1-D filters can be employed. Second, the stability issues of
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the 2-D filter is guaranteed if the 1-D subfilters employed are stable, and third, the 1-D
subfilters form a parallel structure that allows extensive parallel processing.

The SVD can be applied to impulse response matrix (input-output data) as in [8-
10], or it can be applied to the sampled magnitude response as in [11-13]. In [8,9], a state
space model of the separable-denominator transfer is obtained, while in [10], the state
space representation is obtained by decomposing the 2-D impulse response matrix into
two 1-D digital filters (single-input multi-output and multi-input single-output).
Moreover, it was shown that an optimal decomposition could be obtained. In conjunction
with the decomposition, in some of the previous work [9,10,12], the balanced model
reduction is applied to the decomposed state space representations to obtain
computationally efficient filters.

In this paper, we propose a new and computationally efficient algorithm to design
2-D digital filters using the SVD in conjunction with singular perturbation model
reduction. This algorithm is different from the others algorithms in two aspects: First, the
SVD is applied to the impulse response matrix (Hankel matrix) instead of the sampled
amplitude response. This enables us to decompose the Hankel matrix into parallel
sections of two 1-D filters in cascaded. Second, the real Schur form decomposition
(RSFD) [14,15] is applied to these decomposed 1-D subfilters to convert them from high
order FIR filters to reduced order IIR filters in the singular perturbed form. The
conversion algorithm is based on finding the orthonormal eigenspaces that correspond to
the large eigenvalues of the cross-Gramian matrix W,,. This algorithm avoids

computing the balancing transformation, which tends to have numerical difficulties and
ill-conditioning problem [16].

In Sections 2 and 3 we formalized the 2-D digital filters and we will show how the
SVD is employed to decompose the 2-D filters into parallel branches of two 1-D filters
in the z, andz, domains. Moreover, we see how we choose the decomposition index,
which determines the number of parallel branches in our design. In Section 4 we
describe how to use the real Schur form decomposition of W, to obtain the reduced
order singular perturbed IIR digital filters from the decomposed FIR filters obtained in
Section 3. Section 5 gives two design examples to illustrate the significance of the
proposed technique. Conclusion is given in Section 6.

Design Problem Formulation

A 2-D FIR SISO digital filter with a rectangular support in the region defined by
-N;j/2<n; <N;/2, i=12,(N; is assumed to be even), can be characterized by the

transfer function

N/2  Ny/2 o n
H(zy,25)= = ¥ h(ngny)z Mz, 1)
n=—N;/2n,=-N,/2
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where h(nq,n,) is the impulse response of the filter. For the quadrantally symmetric
filter, the impulse response is real and

h(ny,nz)=h(=ny,—nz) =h(-ny,ny)=h(ny,-ny).

This type of filter has a separable denominator [9,10]. The transfer function
H(z4,z,) given in (1) can be rewritten as:

H(z1,22) = LFi (216 (22) @

where F;(zq) and G;(z,) are transfer functions of 1-D subfilters inz; and z,

domains, respectively. k is called the decomposition index and it is determined by the
allowable error, as we will see later in the next section. Moreover, k determines the
number of parallel sections. Now, if these subfilters are FIR, then we have

N/2 n
Fi(z1)= X /zfi(nl)zl ! 3

ng=—
and

N/2 “n
Gilza)= > gi(n2)z," @

nNy=
wheref;(ny) and gj(n,) are the impulse responses of the 1-D FIR filters in the

directions N, and N, respectively.

Equations (1) to (4) show that a quadrantally symmetric filter can always be
realized using a set of Kk parallel sections where the i"" section is characterized by the
impulse response h;(ny,n,) =f;(n{)g;(n,).

Now, having the impulse response specifications h(n,,n,) at the support
Sp ={(ny,ny):0<n; <N, i=12}, orin a matrix form:

Th(0,0) h(01) . . h(O,N)]
h(L0) h(l)

T
o
Il

, rank(Hg)=r. (5)

_h(l\.|,0) ::h(N.,N)_
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The given 2-D specifications Hy can be decomposed into two 1-D specifications
as Hq =FG by the singular value decomposition, where Fand G are two matrices of
dimensions (N+1)xr and rx (N +1), respectively. Now, each column of F( row of G)
represents the impulse responses of the SISO 1-D FIR filter in the z;andz,,

respectively. The decomposition and the approximation of 1-D FIR by IIR filters steps
will be discussed in the following sections

The Singular Value Decomposition (SVD) of the 2-D Impulse Response

In this section, the SVD is applied to the impulse response of the 2-D quadrantally
symmetric digital filter Hy as follows:

r
Hd:UZVT:%ﬁuwr (6)
1=
where U=[u1 u, . . ur], V=[v1 Vo .o vr]and
2:[01 Gy . . c,]. Assume that the singular values o;’s are appeared in a

descending order, i.e., 61>05 >....... >o,, then for o, >>oy,q, where k<r, the
matrix H, can be approximated as

K Tk -
Hyg Z_ZlGiUiVi Z_Zlfigi =Hg )
i= i=

where f; e R(NX = 01/2

this stage is [17]

ujand g e R(N+D =csi1/2viT. The approximation error at

&d :“Hd _Hd“z =Okil ®)

Where ||.|, denotes the Euclidian norm of the matrix involved. The approximated

Hankel matrix F|d can be rewritten as
Hq = FG, ©)

whereFe RN —f, £, . . f]andGeRFND —[g] oF . . of]
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Notice here that, as we mentioned before, each column of F (row of é) represents
the impulse response of an FIR filter. In the next section, we use the singular
perturbation technique to convert the high order FIR filters to low order IIR filters

Singular Perturbation Approximation of FIR by IIR Digital Filters

In this section, we use the singular perturbational model reduction [16] to convert
the high order nonrecursive (FIR) into much lower order recursive (1IR) digital filters.

The similarity transformation matrix T that, converts the FIR to IIR digital filters is
computed by finding the eigenspaces that span the large and the small eigenvalues of the
cross-Gramian matrix W, . The eigenspaces are computed by using a very reliable and

numerically stable algorithm known as real Schur form decomposition (RSFD).

From (9), the transfer functions of the 1-D FIR filters in the z, and z, domains
are characterized by

~ N s
Fi(z1) = _Zofji z;) (10)
J:
and
~ N i
Gi(z2) = _ZogijZZJ (11)
J:

respectively. Thus, the design of 2-D digital filter can be accomplished through the
following steps:

1. From the transfer functions of the 1-D FIR fiIters,IE,(zl) and éi(zz)for
i=12,....,k, find the state space representations (A,B,C,D).

2. Apply the singular perturbational model reduction to approximate the FIR
filters, characterized bylE,(zl) and éi (z,), by IR digital filters, characterized
by Hj;(z1)and Hi, (z5), respectively.

3. Connect Hj;(zq)and Hj,(z,) in cascaded as shown in Fig.1, the parallel
realization of the 2-D digital filter.

Before we explain how the first two steps are done, let us introduce the transfer function
Hgr (2) in place of F(z;) and G;(z,) for each ito overcome the notational problem

involved in the subscripts of F,G and z. Thus H rir (2) is written as:

N N -1
Hrr(@) = X hjz =D+Clzly -A]"B (12)
j=0



Rabah W. Aldaheri

VYA
fi if F(zq)isselected
where hj=¢ 1 (21) _ (13)
gjj 1f Gj(z,)isselected
The state space ( A, B,C, D )in the controllable canonical form is given by
[0 0 0] (1]
10 . .0
A=|0 1 0 . .| B=]|. ,Cz[hlhz ...... hN]andDZho. (14)
o . .10 |[o]

The purpose of the model reduction is to approximate the Nth order FIR by an

n™ order IIR digital filter, where n < N through a similarity transformation T.
Define the cross-Gramian matrix W, [15,18] as

W, = >AKBCAK (15)
k=0

Equivalently, W, can be computed by solving the Lyapunov equation
AW A —-W, +BC=0 (16)

Notice that W, is invariant under the similarity transformation [15,18] and the singular
values &;, are given by

Si(HER (@) =i(Wgo),  1=12,,., N (17)

Notice also that the singular value o; is different from the singular value of the 2-D
Hankel matrix Hg4. The order n is chosen based on a specified error bound, € which
satisfies the inequality

N .
e=|Hrpr(@)-H ()], <2 =6 (18)
i=n+1

where | | denotes the maximum absolute value of its frequency response and H, (2) is
the transfer function of the reduced order IIR filter and defined as
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H,(z) =D, +C,[zl, - A1 'B,. (19)

The state space representation of the singular perturbation reduced order IR filter
(A;,B;,C,,D;) will be defined later after we define the transformation T that

transforms the state space representation, (14) into (A, B, E:, 5). In the rest of this
section, we will propose the algorithm that computes this transformation using the
RSFD.

Notice that, because of the special structure of the state space of the FIR filter (14),
equation (15) is simplified to:

W, = 3 AKBCAK =0c0,, (20)
k=0

where Q¢ and Qg are the controllability and the observability matrices, respectively,
which are defined as:

Qc =B AB ... AN'lB]and Qo :[cT ATcT .. (AT)N'lcT]r (21)

Notice also that A is nilpotent since AN =0. Therefore, equation (20) yields

Thy h, . . hy
hy hy .. 0

We=| . . . . . (22)
hy 0 . . 0]

Again, notice that the matrix Wg,is symmetric and is easily constructed.
Therefore, there is no computation involved in finding W, .

In the rest of this section, we summarize briefly, the singular perturbational model
reduction algorithm in the following steps:

i. For each branch, design the FIR filter characterized by equation (12). Find the
impulse response, h;,i=0,1,........... ,N and from which construct the state-

space representation (A, B, C, D) as in (14).
ii. Construct W, as in equation (22)
iii. Compute the real Schur form decomposition (RSFD) of W, [15],
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TTW,T=A (23)
where A =diag(A g, Ao, e , An) with the ordering
Pa| = o> VN 1 | - > [y

The desired order of the IIR filter is determined based on the required error bound
€, which is defined by equation (18).

iv. Partition the matrices T and T such that

TT
L}T}Wco [, Tl=[A1 Ayl (24)
2
where
Ay =diag(hq, Ao, yAp)and Ay =diag(Apyg, Apggs e JAND -

The matrices T; eR NN and TlT span the right and the left eigenspaces associated with
A; Similarly, T, e RNVN"and T) span the right and left eigenspaces associated with
Ay.

v. Apply this transformation, T to (A, B, C, D) to obtain

. e -
TAMm To=A=|fn 2o (25a)
T Ay Ax
I =[5 s
L B=B=| 1| c[r T,]-C=[¢; C,|adD-D (25b)
T2 B

vi. The state space of the reduced model is defined as [16 ]:

Ar=As —Ap(Ay —Inn) TAg (26a)
B =B1—Ap(Ay —Inn) By (26b)
Cr=Ci-Co(Ap —Inon) TAy (26¢)
Dy =D-Cy(Ap —In-n) By, (26d)
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So, the reduced order IR filter characterized by equation (19) is an approximate to the
full order FIR filter characterized by equation (12). Now, H,(z) = Hj;(z;) if the first
row of equation (13) is chosen and H,(z) = Hj,(z,) if the second row of equation (13)
is chosen. Repeat steps (i)-(vi) for i =1,2,......,k . See the parallel realization of the 2-D
recursive digital filter in Fig. 1.

Input
> > HII(ZI)' - P Hu(zz) >\’> »
A Output

> HZ](ZI) > HZZ(ZZ) [

' .

1 1

: !

1 1

I 1

i i

] ]

1 ]
» Hy(z) » H,,(z,)

Fig. 1. Parallel realization of 2-D IIR (Recursive) digital filter.

In this section, a 2-D circularly symmetric low pass and fan digital filters are
designed to illustrate the effectiveness of the proposed technique in the decomposition
and in the model reduction steps.
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Example 1: Consider the 2-D circularly symmetric low pass digital filter which satisfies
the following specifications:

1 for0<Q<o,
0 for og<Q<m

|H(®1:®2|={

Where Q = 1/0)12 + co% ,0p =0.4nand og = 0.45m. Thus, o, =0.425x , and the
corresponding impulse response smeared by Hamming window is given by

0.21253,(0.425my/(n; — 24)2 + (n — 24)2)

V(01— 24)% + (n, - 24)°
XW(nl —24,n2 —24),0£ Ny, No <48

hg(ng,ny) =

where W(i, j) = 0.54 +0.46 cos(2my/i + j2 /48) and J, (X ) is the first order Bessel

function of the first kind. The desired magnitude response, which will be considered here
as an ideal magnitude response is shown in Fig. 2.

15 i

Magnitude

1 1 MNormalized Frequency a

Mormalized Frequency o,

Fig. 2. Ideal magnitude response of circularly symmetric 2-D low pass digital filter.
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Following the procedure of Section 3, we apply the SVD to the resulted 49 x 49
impulse response matrix. The singular values of Hare displayed. It is found that only
25 of these singular values are nonzero, which means that the actual number of parallel
branches is 25, but because of the smallness of some of these singular values, we can
only retain 4 of them, i.e., choosing the number of branchesk to be 4, gives a
satisfactory result. So, this is the first approximation, reducing the number of parallel
branches from 25 to only 4. The second approximation is to reduce the order of
individual 1-D filters. This is achieved by the singular perturbation model reduction. So,
if we follow the procedure of Section 4, the filters order is reduced from 48 to the values
given in Table 1, where the first element in the bracket is the order of H;(z;), and the

second element is the order of Hj,(z,)in Fig.1. This choice, of number of parallel

branches and the filters orders, gives a maximum passband error of 3.29% and maximum
stopband error of 2.95%. The resulted magnitude response of the 2-D IIR filter (reduced)
is shown in Fig. 3.

Table 1. Passband and stopband errors for the reduced order 2-D IIR digital filter

No of Parallel Orders of the Passband Passband
Branches k Subfilters (nq,n») Error Ep Error Eg
4 (16,16) 0.0329 0.0295
1.5+

Magnitude

T MNormalized Frequency o

Mormalized Frequency

Fig. 3. Magnitude response of circularly symmetric 2-D IR low pass filter.
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Example 2. As a second example, consider the design of 63x63 fan filter with
tan(¢) = 0.35, using Kaiser window [7].

The ideal magnitude response of this filter is depicted in Fig. 4. Again the SVD of
Section 3 is applied and kis chosen to be 8 . The exact number of the parallel branches is
22. Applying the singular perturbation model reduction algorithm to the FIR filters of
order 62, giving us IIR filters of orders listed in Table 2. The maximum passhand and
stopband errors are 3.04% and 3.13% respectively. The magnitude response of the
reduced order 2-D IIR filter is shown in Fig. 5.

Magnitude

L MNormalized Frequency

MNormalized Frequency o,

Fig. 4. Ideal magnitude response of a fan filter of order 63 x 63.

Table 2. Passband and stopband errors for the reduced order 2-D IIR fanfilter
No of Parallel Orders of the Passband Passband

Branches K Subfilters (N5, Nq) Error Ep Error Eg
(31,16),(32,18),(33,17),(34,18)
(35,18), (36, 20), (36,18), (36, 20)

0.0304 0.0313
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Magnitude

1A Mormalized Frequency «

MNormalized Frequency o,

Fig. 5. Magnitude response of reduced order IR fan filter.

Notice here in this example, that the reduction in the ndirection (w; band)is less
than one third, while the reduction in the n,direction (w, band) is about one half. This
is expected because the filter band ®, is extended along the whole band, while the filter

band , is extended to less than g see Figs 4 and 5. It was noticed in [19] that for the

two reduction algorithms, balanced model truncation (BMT) and Hankel-norm optimal
approximation (HOA), the wider band we have, the less reduction we obtain. In [20], it
was shown that BMT gives relatively smaller error at high frequency compared with the
singular perturbation approximation. A comparison of error performance for the
truncated model reduction and singular perturbation reduction for different types of
filters was given in [16], Moreover, it was shown that, as in the BMT and HOA, the
singular perturbation model reduction for the narrow passband filters can be reduced
more effectively than the wider passband filters. This explains why the reduction in n,is

less than the reduction in n; directions in this example.
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Conclusion

In this paper, a new design technique for quadrantally symmetric 2-D recursive digital
filters using SVD and real Schur form decomposition is presented. This technique is
based on two steps: decomposing the 2-D impulse matrix, Hy into k parallel sections,

each comprising two 1-D FIR digital filters connected in cascaded. The FIR subfilters of
order N are converted to lower order IIR filters of order n;, wherei=1,2,......, k using

the singular perturbational model reduction algorithm.

The given examples had shown that the recursive magnitude response is very close
to the ideal and the maximum errors in the passband and the stopband are relatively
small.
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