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Abstract. Unequal current distribution inside underground cables in close proximity causes unfavorable 
induced voltages and losses in their sheaths. Because of the problem complexity, most previous researchers in 
the field have not modeled the skin and p~oximity effects with sufficient accuracy. In this paper, a new 
technique is presented for tackling the eddy current problem of non-magnetic multi-conductor systems. The 
technique utilizes an efficient impedance matrix formulation, which yields accurate current distribution 
assessment. Appl ications to a set of test cable systems are also presented in the paper to demonstrate the 
usefulness of the proposed technique. 

Introduction 

Single conductor sheathed underground cables of different arrangements for three-phase 
voltages up to 132 kV are being widely used. The current distribution inside cable 
strands are usually non-uniform due to both skin effect and its proximity to the rest of the 
cables in the arrangement. Further, sheath-induced voltages cause eddy-currents and 
losses. These voltages, in the case of open-circuited sheaths, could become hazardous to 
persOlmel operating in the vicinity of the cable. In addition, excessive sheath losses may 
be produced in case of bonded sheaths. 

Since the early decades of this century several contributions in this area of interest 
have been reported. H. Halperin and K.W. Miller have suggested different methods for 
bonding cable sheaths to reduce sheath losses without causing excessive induced voltages 
in the sheath [I] . Useful expressions for sheath voltages, currents and losses were given 
for unbonded and solidly-bonded sheaths in [I]. 
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However, the proximity effect has been ignored in deriving these expressions. 
H.B. Dwight has introduced simplified analysis, which did not consider the proximity 
effect properly, to calculate the current distribution in cables (or bus bars) as well as the 
eddy-current losses in their sheaths (or enclosures) for specific arrangement [2]. Toshio 
Imai has extended the formulation of H.B. Dwight and applied it to randomly spaced 
multiple conductors [3]. The effect of the internal cable current on the sheath losses was 
included through subsidiary calculation [3-5]. Cable sheaths and busbar enclosures were 
considered thin throughout these approaches. Correction factors were introduced to 
consider the effect of sheath thickness on its eddy-current losses [3-5]. Reference [6] 
included an iterative solution to determine the current sharing for different cable 
arrangements, based on many simplifying assumptions and formulas. The results 
reported are not reliable as they deduced from the first iteration due to convergence 
problems. 

None of the previous approaches has taken the skin and proximity effects properly 
in terms of accuracy achieved in the calculations. In calculating the losses in certain 
sheath the outer cables were replaced with filamentary conductors and the effect of their 
sheath currents was ignored [2-5]. In calculating cable parameters to determine the 
current sharing, the cable of interest is replaced with solid conductor of equivalent radius 
while the remaining cables are represented by filamentary conductors [2,6]. 

Indirect approach, based on optimization techniques, was introduced to improve 
the ampacity of parallel single-core cables by uninsulated additional conductors [7]. To 
avoid unnecessary approximations, an efficient and direct formulation for the eddy 
current problem of a nonmagnetic multi-conductor system with translational synunetry 
was developed and used to compute the skin and proximity effects on the impedance 
matrix of transmission networks [8]. The approach presented in reference [8] is 
modified and applied to some arbitrary power cable installations with open circuited 
(unbonded) sheaths as described in the following sections. 

Formulation 

For n straight parallel nonmagnetic conductors, the current density distribution 
inside conductor k can be described by the following Fredholm integral equation [8] 

k = I, ... , n (I) 

where p and pi are two dimensional position vectors corresponding to the observation 
and integration points respectively, ffi is the angular supply frequency, ~o is the 
permeability of free space, and <Yk is the conductivity of conductor k. 
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Discretizing the cross-sectional area of each conductor into small elements and 
assuming that the current density is constant over each element, the above equation 
reduces to a system of linear algebraic equations 

[8][J] = [Js] (2) 

Rearranging equation (2) we obtain 

[J] = [b][Js] (3) 

The total current in each current-carrying conductor is given by 

(4) 

where Nk is the number of elements of conductor k and Oi is the cross-sectional area of 
element i. The summation of equation (4) reduces to zero if the conductor is open 
circuited (e.g. unbonded sheath). Performing the summation for the different conductors 
and knowing that Js = crEs, we obtain the following equation 

(5) 

where Es is the matrix of the impressed source term of current carrying conductors, 
and Ess is the matrix of the induced voltages per unit length in the open-circuited 
conductors. 

Equation (5) can be rearranged in the following form 

[I] = [Y 11] [E s ] + [Y 12] [E ss ] 

= ~Yl d- (YI2 ][Y 22 ]-1 [Y 2 1 ]](Es] 
= [Y t ][Es] 

Including equation (6) into the transmission line equation 

(7) 

where [lu] refers to transmission network impedance matrix, [lu] = t[Ytr l
, £ is 

length of the transmission line, we can calculate the current in the different three phases. 
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[Es] can be obtained from 

(8) 

Substituting back in (5) we get 

[E 55 ] = [y 22 ]- J [y 21 ] [ E 5 ] (9) 

To calculate the eddy-current losses in cable sheaths (3) is used to calculate the 
current distribution in the different elements of each sheath. 

It is worthy to mention that this formulation is also applicable to busbars (with 
open circuit enclosures) feeding large industrial loads . When applied to power cables, 
each strand is considered as a separate conductor. In this case (5) can be used to 
calculate the current in each strand and to proceed in the calculations another 
summation similar to that in (4) is done to calculate the current in each cable and 
finally the process is repeated to get an equation describing the current in each phase 
in terms of [Es] and [Essl 

Results 

The algorithm described in the above section is implemented in computer 
program and applied to different cable configurations. The specifications of the cable 
used arc summarized in Table I. Tables 2-5 summarize the results of the proposed 
technique for the four different configurations listed in Table I. The tables include 
the results of the induced sheath voltages as computed by the formulas listed in [ I], 
based on the nominal cable current as well as on the actual values calculated by the 
proposed approach. The actual values are less thail the nominal values due to the 
voltage drop on the cables. Such voltage drop would cause the voltage at various 
points along the cable length to be less than the rated value, which is being taken at 
the sending end of the cable. 

It is clearly seen that there is a good agreement between the two sets of results for 
triangular arrangement (configuration # I), and the minor difference between the results 
is due to proximity effect, which is the same for the three cables. The difference 
between the two sets of results for the other three configurat ions is higher due to the 
unequal effect of proximity, which depends on both spacing and current phase angle of 
the outer phases. The power loss in the sheaths of phase C (leading the middle phase) is 
higher than those of phase A (lagging the middle phase). 
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Table 1 Cable data 

Specifications 
Cables: 13.8 kV, 3x single-core, copper XLPE 300 mm' 
Standard: lEC 
Conductor: 18/1 (spec. A W 131-2) 

Diam. 23 mm 
Screen thick. 0.8 mm 

Insulation: XLPE 
Thick. 4.5 mm 
Screen thick I mm 

Sheath: Metallic screen (spec. A W423-2) Thick: 0.4 m 

Operating conditions 
Nominal current : 
Sheath grounding: 
Conductor temperature: 
Frequency: 
Conductivity: 

Cable arrangement 
Spacing: 
Length: 
Phase sequence: 
Reference voltage: 

Configurations 
# I single circuit, triangular 

#2 single circuit, flat 

#3 double circuit, flat 

#4 double circuit, flat 

Table 2. Configuration # 1 

Quantity 

Current (A) 

Sheath voltage (V) 

Sheath power (W) 

900 A 
At one point 
90°C 
60 Hz 
4.47 X 107 Sm" 

0.07 m 
600 m 
A,B,C 
Vo 

A 
C 

ABC 

A,B,C, 
A, B2C, 
A,B,C, 
C, B,A, 

Phase 

A 

B 

C 

A 

B 

C 

A 

B 

C 

B 

Note: Total power per circuit = 7830 W 
"Values based on present calculated currents. 

Present work 

895.27 

895.27 

895 .27 

54.82 

54.82 

54.82 

2610 

2610 

2610 

Reference [1) 

900 

900 

900 

55.3 (55.1)" 

55.3 (55.1)" 

55.3 (55.1)" 
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Table 3. Configuration # 2 

Quantity Phase Present work 

A 898,00 

Current (A) B 895,27 

C 892.55 

A 73.74 

Sheath voltage (V) B 54,8 

C 72.24 

A 1250 

Sheath power (W) B 5115 

C 1348 

Note: Total power per circuit = 7713 W 

"Values based on present calculated currents, 

Reference [1 [ 

900 

900 

900 

73,59 (73.43)" 

55.3 (55,01)" 

73 .59 (72.89)" 

Comparing the results of Table 4 and Table 5, configuration # 4 is 
recommended as the voltages induced and power losses in the sheaths are lower than 
that of configuration # 3, 

Table 4. Configuration # 3 

Quantity Phase Present work Reference [11 

A, 899,72 900 

Current (A) A, 899,71 900 

B, 895,1 900 

B, 895,1 900 

C, 890,74 900 

C, 890,74 900 

A, 102,12 101.34 ( 101.31)" 

Sheath voltage (V) A, 102,12 101.34 ( 101.31)-

B, 68,5 69.4 (69,02)-

B, 68,5 69.4 (69 ,02)-

CI 98,3 101.34 (100,3)" 

C, 98,3 101.34 (IOOJ )" 

AI 3722 

Sheath power (W) A, 3722 

B, 11908 

B, 11908 

C I 3878 

C, 3878 

Note: Total power per circuit = 19508 W 
'Values based on present calculated currents . 
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Table 5. Configuration # 4 

Quantity Phase 

A, 

Current (A) A, 

B, 

B, 

C, 

C, 

A, 

Sheath voltage (V) A, 

B, 

B, 

C, 

C2 

A, 

Sheath power (W) A, 

B, 

B, 

C, 

C, 

Note: Total power per circuit = 7357 W 
'Values based on present calculated currents. 

Present work 

896.7 

896.7 

895.03 

895.03 

894.07 

894.07 

46.75 

46.75 

68.5 

68 .5 

43.45 

43.45 

2707 

2707 

1831 

1831 

2819 

2819 

Conclusion 

Reference III 

900 

900 

900 

900 

900 

900 

45.38 (45.21)' 

45.38 (45.21)' 

69.4 (69.02)" 

69.4 (69.02)' 

45.38 (45.08)" 

45.38 (45.08)* 
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The new technique presented in this paper, for evaluating current distribution in 
closely-spaced cables, provides more accurate results as compared to other existing 
techniques . The accuracy gain was achieved by modeli ng both skin and proximity 
effects properly. The use of efficient impedance matrix formulation has achieved the 
required accuracy with, however, a modest additional computation burden. Results of 
the applications presented in the paper for four different cable configurations confirmed 
that non-uniformity in current distribution could, in some cases, account for significant 
differences in phase sheath voltages and power losses. 
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