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Abstract The covering problem, a classical problem in switching theory, involves the selection of some 
primc ill1plicants irredundantly to cover the asserted part of an incompletely specified switching function. 
This paper advocates the use of the variable-entered Karnaugh map (VEKM) to solve this problem. To set the 
stage for achieving this purpose, a novel tutorial exposition of the VEKM-related variable-entered cover matrix 
is presented. Subsequently, the paper offers two VEKM solutions of the covering problem. The first solution 
relics on the new concept of VEKM loops. By contrast to a loop on a conventional Karnaugh map which is 
characterized by a single product, a VEKM loop is identified by two products, namely loop coverage (which 
depends only on map variables) and loop depth (which depends only on entered variables). In the second 
solution, the VEKM is used directly as a cover map in such a way that it is not littered with unnecessary 
details or too many overlapping loops. All solution procedures are demonstrated via illustrative examples that 
help reveal their visual merits as well as their applicability to relatively large problems. 

I. Introduction 

The covering problem is a classical problem in switching theory that involves the 
determination of all irredundant disjunctive forms (IDFs) of a switching function from 
its complete sum. Though interest in this problem for digital-design purposes has 
declined, the covering problem still remains of paramount importance in many other 

. engineering applications such as the areas of Boolean reasoning and Boolean-equation 
solving [1,2]. In these areas, the analyst typically handles medium-sized problems and 
may occasionally prefer an insightful manual tool to a faster software one. 

We deal in this paper with an incompletely specified switching function expressed 
111 the form f = g v d(h), where g and h are completely specified switching 

functions, called the asserted and don't care parts of .l respectively. An irredundan1 
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disjunctive form (lDF ) of f is a minimal subformula of the complete sum CS for 

(g v h) that covers g [1]. In other words, a sum-of-products (s-o-p) formula S is an 

IDF for f if and only if 

(a) S is a subformula of CS (g v h), i.e., each and every term of S is a term of CS 

(g v h) and hence a prime implicant of f 

(b) g S; S, i.e., the formula S covers the asserted part of f 
(c) No proper subformula of S has the property (b), i.e., if one or more terms of 

the formula S is removed from it, it ceases to cover the asserted part of f 

Among the IDFs of f, any formula with the minimum number of terms as a primary 
criterion, and with the minimum number of literals as a secondary criterion is called a minimal 
sum forf While f has a unique complete sum it may have more than one minimal sum. 

There are many algebraic, tabular or mapping methods for obtaining all the IDFs of a 
switching function [3]. Most of these methods use the complete sum as a starting point, or 
more generally act in a 2-step fashion by fmding the complete sum fIrst before proceeding 
to derive the IDFs. To the list of these methods, it is desirable to add one method based on 
the use ofthe variable-entered Kamaugh map (VEKM) since such a method could be (a) an 
efficient combination of algebraic and mapping methods, (b) a powerful tool that can push 
further the limit on the number of variables to be manually processed, and (c) a 
pedagogical aid that provides pictorial insight on the intrinsic structure of the problem and 
on the intricacies of its proposed solutions. In a companion paper [4], the VEKMhas been 
used successfully to address the fIrst step of deriving the complete sum. In this paper, the work 
of [4] is continued by exploring use of the VEKM in obtaining all the IDFs of an ISSF 

g v d( h) from its complete sum CS (g v h). Once the set of all IDFs is obtained, the 

minimal sum is trivially deduced. To set the stage for this work, we start in section II by 
presenting a novel tutorial exposition of the VEKM-related Variable-Entered Cover Matrix 
(VEC!v1) introduced in [5]. This VECM exposition is made in such a way that its ideas can be 
lucidly carried out to VEKM procedures. Two such procedures are given herein in detail, one 
in section III that introduces a new concept of VEKM loops and discusses the construction of 
VEKM prime-implicant loops, and the second in section IV that uses the VEKM as a cover 
map. The present VEKM procedures are algorithmic in nature and can be easily automated. 
They guarantee the derivation of all IDFs of an ISSF and consequently obtain its exactly 
minimal sum(s). By contrast, earlier single-step VEKMprocedures (see, e.g. [6]) are heuristics 
that do not achieve exact minimality all the time. Final comments are given in se~tion V. 

2. A VEKM-related Exposition of the Variable-entered Cover Matrix (VECM) 

Reusch [5] used a variable-entered cover-matrix to select sets of prime implicants 
such that their sums are IDFs of a given ISSF. His method provides a common setting in 
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which to view and/or generalize the earlier results of Quine [7], McCluskey [8], Ghazala 
[9], Chang and Mort [10]. Moreover, Reusch's method does not restrict the nature of the 
representation of the switching function under consideration; neither does it require that 
such a representation be related in any fashion to the complete sum of the function. 
However, Reusch's paper is somewhat hard to follow, though it can be given a lucid clear 
interpretation that relies heavily on VEKM-related terms. It is such an interpretation that we 
hope to present to the reader now. The reader may fmd that our language is surprisingly 
different from that of Reusch, though we are delivering the essence of his method. 
Basically, he stressed the theoretical foundation of the method, while we are trying to give a 
practical working knowledge of it. In the two sections to follow, we will be able to develop 
the present method into what can be called purely VEKM cover methods. 

To construct the Reusch cover matrix, let the asserted part of the ISSF f under 
consideration be given by the s-o-p formula 

jrnax 
g== U gj' 

j 
(1) 

where, beside being an asserted implicant of f, the term g j is not restricted 

In any other fashion whatsoever. In particular, gj is not required (though it can be) a 

minterm or a prime implicant. The complete sum for (g v h) is given as 

(2) 

where the union operator in (2) runs over all the prime implicants Ii of (g v h). Now, 

construct a table or matrix of size imax x jmax such that Ij is the coordinate or key ofthe 

horizontal row i of the table, while g j is the coordinate of its vertical column j. The 

entry 7; j of the table at row i and column j is given by the ratio (residue or quotient) 

(3) 

Note that 7j j represents the part of g j that is covered by Ij, and hence : 7; j == I} 

means that Ij covers g j completely because g j subsumes Ij while {7j J = O} means 

that 'i does not cover any part of g j because Ij and g j are disjoint. F or this 

latter case, Reusch uses a hyphen (-) instead of a 0, which does not conform to our 

present interpretation and seems somewhat awkward. 
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With the matrix [T] properly constructed, we are sure that every columnj will have the 
value I in at least one of its elements, which is another way of saying that an asserted 

implicant gj of f must be totally covered by at least one of its prime implicants p; . If such 

a way of covering is the sole way for g j to be covered, then the corresponding p; is 

an essential prime implicant. However, it might so happen that gj is covered by some 

alternative means if several prime implicants p; I S cooperate to cover a single gj' such that: 

a) not a single one of them is capable of covering gj alone, and 

b) if one of them is removed, then the remaining ones will not suffice to cover g j . 

For such a set of prime implicants both of the following two equivalent conditions 
are true: 

a) the generalized consensus ofthese prime implicants is subsumed by gj' 

b) the union of table entries in column j at the rows i corresponding to these Ii I s is 

equal to 1 irredundantly( The problem of finding minimal sets of terms that sum to one 
irredundantly is known as the tautology or the sum-to-one problem in logic theory [1] ). 

The next step in the Variable-Entered Cover Matrix (VEClv!) method is to write a 
Petrick function P F expressing all the IDFs of f This function is written as a product­
of-sums formula: 

.imax 
PF = n A j' 

j=1 
(4) 

where A· 
J 

IS an expression Gf the possible ways of selecting prime implicants 

to cover the asserted implicant g j , viz., 

A j = U n Pi, 
I iEI 

with the union operator in (5) taken over all sets 1 that satisfy the 2 properties 

I <;;;; IT = {1,2,3, ... , i max }, 

U Ti i = I (irr.), 
iEI . 

where the abbreviation (iIT.) stands for" irredundantly". 

(5) 

(6a) 

(6b) 

To find all IDFs of f, the Petrick function PF must be converted into a sum-of­
products form by multiplying its alterms out and invoking well-known simplification 
rules (see, e.g., Muroga [3]). The details of the method are now illustrated by an 
example. 
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Example 1 
Consider an ISSF whose asserted part is given by the unrestricted s-o-p formula 

g = x\x3x4X5 v X\X2X3x4X6 v XIX2x3X5X6 v 

xlX2X3x5x6 v X\X2X3x5X6 v Xlx2x3x4X5 v XlX2X3x7. (7) 

and whose upper bound (g v h) is a CSSF which is characterized by a complete 

sum having the 16 prime implicants listed as row coordinates of Table I. This Table acts 
as the VECM for this function. As expected, each column has one or more of its 
elements equal to 1. The Petrick function is immediately written as 

PF =(P5 v PI P3 v P6P3)(Pl)(P2 v P3)(P2)(P7 v PS)(P6)(P4 ) 

= P]P6(P5 v P3 v P3)P2 P4(P7 v PS) 

= P]P2 P4 P6 (P3 v P5)(P7 v PS) 

=~~~~%~v~~~~%~v~~~~%~v~~~~%~. (8) 

which means that the ISSF under consideration has 4 IDFs, all of which turn out to be 
minimal since all of them have the same number of terms and the same number of 
literals. 

Example 2 
Consider an ISSF whose asserted part is given by the disjunction of the first 8 

prime implicants of the function in Example 1, and whose complete sum consists of the 
same 16 prime implicants in Table 1. The VECM of this function is given in Table 2. 
Now, the 1 entries appear exactly once per column. The Petrick function in this case is 

PF =(P5 v PI P3 v P6P3)(PI)(P2 v P3)(P2)(P7 v PS)(P6)(P4) 

= PI P6(P5 v P3 v P3)P2 P4(P7 v PS) 

= PI P2 P4 P6 (P3 v P5)(P7 v PS) 

=~~~~%~v~~~~%~v~~~~%~v~~~~%~. (9) 

which means that the ISSF under consideration has a single IDF and hence a unique 
minimal sum. 

Example 3 
Consider the ISSF fgiven in Example 1 of [6], namely 

(10) 
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Now, let the asserted part of f be expanded as a disjunction of min terms. The 
VECM of this function is given in Table 3 in which the column coordinates are the 6 
asserted minterms of f, and the row coordinates are its 7 prime implicants which are 
obtainable from (10) by any of the techniques in [3]. Table 3 is a special case of a 
VECM which is constant rather than variable entered and is well known as the Quine­
McCluskey cover matrix (QMCM) [3]. The QMCM is related to a VECM in the same 
way a CKM is related to a VEKM. The Petrick function in this case is 

PF = (PI VP4)(P2 VP4)(P2 vP7 )(P3 vP7)(P3 VP6)(PI vps) 

= (PI v P4 PS )(P2 v P4 P7 )(P3 v P6P7) 

=~~~v~~~~v~~~~v~~~~v~~~~v 

P3 P4 PSP7 v P4 PSP6 P7, 

which means that the present ISSF has 7 IDFs, only one of which is minimal. 

(11) 

Table 3. The variable-entered cover matrix for an ISSF, whose asserted part is the disjunction of 
minterms 

ABeD ABeD ABeD ABeD ABeD ABeD 

IJ = BCD 0 0 0 0 

12 = AD 0 0 0 0 

I] = ABC 0 0 0 0 

P4 = ;Ie 0 0 0 0 

r. ... = ABD 0 0 0 0 0 

Fe) = /ICD 0 0 0 0 0 

P7 = BCD 0 0 0 0 

3. VEKM Prime Implicant Loops 

This section discusses a new VEKM method for obtaining all the IDFs of an ISSF 
with a preknown complete sum. The basic idea is to draw a VEKM representation of the 
asserted part of the given function and then draw entered loops on the given VEKM. The 
entries of the VEKM are not restricted in any way whatsoever other than being in s-o-p 
form, though it may be advisable to have each of them in a minimal form. The concept 
of entered loops is new and fits the use of variable entries. Let a prime implicant P (or 
even any unrestricted term or product) be given by 
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n 
iEM 

21 

(12) 

where E and M are two disjoint sets of indices representing, respectively, subsets of the 

two sets of indices for the entered and map variables, and Yi stands for a literal of the 

variable Xi' i.e., Yi is either Xi or Xi. Now, rewrite Pas 

P= PE PM, (\3) 

where 
PE = n vi, (14a) 

iEE 

PM = n Vi, (14b) 
iEM 

are to be called the loop depth and loop coverage of the product P, respectively. Again, 
rewrite (13) as an expression of a ratio or residue 

(15) 

Note that the transformation from (13) to (15) is possible because the sets of 

literals in the product PE are disjoint from those in the product PM . 

Now, it is possible to have a VEKM representation of the given P by a loop whose 

product is PM which consists solely of map variables. However, such a loop is different 

from a traditional CKM loop, since it does not generally cover 1 entries in the map. 

Instead, such a loop has a coverage dictated by its depth PE which is a product of 

entered variables only. Therefore, the loop PM = pi PE covers only entered terms that 

are subsumed by PE ( including PE itself, of course). 

With the concept of VEKM loops so defined, it is now a straightforward task to 
continue. We draw a VEKM loop for every PI of the given ISSF and then write a 
Petrick function by considering the coverage of each asserted term in each cell of the 
VEKM. Note that the present situation differs slightly from that of section II since we 
now cover entered terms of the VEKM rather than the column keys or coordinates of 
the VECM. In the present case, the Petrick function can still be expressed via (4) 

but Ai therein is now understood to mean an expression of the possible ways of 

selecting prime implicant loops to cover a particular asserted entered term T
i

. Since 
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such a product Tj may~ear III several VEKM cells I, the following p-o-s 

expression for A j can be written 

(16) 

where A j I is an expression of all the possible ways of selecting PI loops to 

cover the asserted entered term Tj in cell 1 of the VEKM, and the ANDing in (16) 

runs over all such cells in which Tj appears. Equations (4) and (16) can be combined to 

yield the Petrick function 

jrnax 
PF = n n A j I , 

j=l I 
(17) 

where the alterm Aj I is given by the right hand side of (5) with the union operator 

therein running over all sets 1 that satisfy (6a) together with the requirement 

or equivalently 

U (Pi / md~ Tj (irr.), 
iEI 

U (Pi E)I ~ T j (irr.). 
iEI . 

(18) 

(19) 

In (18) m, stands for the minterm expansion of cell 1 and in (19) and 

(Ij E), = (Ij / FfM)/ is the entered part of prime implicant loop F[ in cell!. The present 

procedure is further clarified with an example. 

Example 4 
Consider the ISSF I given in Example 2 of [6], namely 

f = ABE v ABE v ADE v ACE v BCDE v ACDE v 

d (A£ v ABcE v ABCE v BCDE) (20) 

Figure 1 is a replica of the VEKMrepresentation fori given in Fig. 4 in [6], with 
prime implicant loops added and don't care entries removed. Table 4 lists all asserted 

entered implicants Tj and the cells in which they appear together with the 

corresponding expressions of A j I' Finally, the Petrick function is written as 
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PF = (PI v P4 )PSP3 P2 (P7 v PI Pg )P9 

=~~~~~~v~~~~~~v~~~~~~, 

23 

(21) 

which means that the ISSF considered has 3 irredundant disjunctive forms which tum 
out to be minimal ( in agreement with our findings in Example 2 of [6]). 

o 

1 II CD 

E 

r·················· "'P:::::::::::::::::f-' .. - .. -

r-.;.--------- -i-- -=== Fi' ~ 
~ 1 ! 0 ~ fo .. }j E = P7 I I 
:... .................. 1.. ........ j AE = P

6
/

1 
i -I-
! 

CD 
a________ -- -t-:~ _ _::__-:__-:~_ .. _. 

~~~----~--------~------~~----r_--~ 

I 

A 

I 

E = Pg/c 
E = P9115 

AB = P3/1 

A = psi D 

Fig I. Prime implicant loops drawn on a VEKM to cover the asserted part of an ISSF. 

4. Use of the Vekm as a Cover Map 

This section presents an improved version of the method in section III that avoids 
the actual drawing of prime implicant loops but instead uses the VEKM as a cover map. 
In each VEKM cell, two different entities are shown, namely, the asserted entry of the 
cell and a list of prime implicants that are candidates for covering it. Cells with 0 

entries are left blank. For each prime implicant loop lj = liM ljE, we conceptually 

define the loop domain or cove~age as that defined by its map product ljM without 

actually drawing such a loop. Then, we enter that PI information in the form 
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(0 : literals of 0E) in each cell of its domain, only wherever this is deemed necessary, 

i.e., only wherever there is· an entry to be covered in the concerned cell. It is now 
straightforward to construct the Petrick function by using the method described in the 
section III. The present method has the visual benefit that the VEKM is not littered with 
unnecessary details such as 0 entries or too many overlapping loops. This visual merit 
can be used to advantage, as it allows the application of the method to larger and/or 
more complicated problems as can be seen from the following examples. 

Example 5 (Example 4 revisited) 
Figure 2 shows the VEKM in Fig. 1 redrawn as a cover matrix. The information in 

Table 4 and hence the Petrick function in (21) are more readily obtained in this case 
thanks to the fact that each VEKM cell is now entered by both the asserted terms to be 
covered and the PIs that can be used to cover them. 

Table 4. Pertaining to the solution of Example 4 
Asserted entered 

Implicant II 

Cell I 

Ways of 
covermg 

Aj! 

B[ 

c D 

EAB EAB 

1] v P4 Ps 

~ 
1'1: l 

1'4 : C 

1'5 : D 

~ ~ 
1'2 : cn P2 : CD 

P3 : 1 

1'4 : C 

p~ : D 

CD CD 

EAB EAB EAB EAB 

P3 P2 P7 v1]PS P 
9 

E 

LL-
'l:c 

'7 : I 

18: C 

1'9 :75 

-~ 
P2 : CD 

18 : C 

I~ : D 

A 

Fig. 2. The VERM in Fig. 1 redrawn as a cover map. In each cell, we show its asserted entry and also 
the prime implicants that are candidates for covering it. Cells with 0 entries are left blank. 
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Example 6 (Example 1 revisited) 

Figure 3 shows a VEKM (used as a cover map) for the ISSF in Example 1. Note 
that this ISSF has 16 Pis and it would be difficult to draw VEKM loops for this large 
number of PIs. However, it is still manageable to present such PIs as covering 
candidates by the present method. The Petrick function is immediately written as 

PF == (P3 v P5 )(PI v P5 v P6 ) (PI )(P2 v P3 )(P2 )(P7 v Pg )(P6 )(p 4) 

== PI P2 P4 P6 (P3 v Ps )(P7 v Pg), 
(22) 

Note that the PF in (22) is equivalent to that in (8) though it looks initially different 
from it. 

X\ 

I X 4 X 5 I )(4 X
5 I X4 )(Cl 

I 
XY~:6 

'3 : )(5 Ij . )(4 '1 : x 4 12 Xs 

" 5 : X 4X 5 1'-) : X 4X 5 ''5 : X 4 )(5 J) 
3 Xs 

110 X 5 )(7 p 
6 

. X 4 X 5 l!4 :)(4)(5 X 6 P5 - X 4 X" 

'11 : X 4 X SX 7 Fil - X 4X S)(7 115 : X 4X 5)(6 110 XSX7 

Fi6 : X 4X SX 6X 7 l!s : X4 X SX6 l!6 : X 4X S)()X7 '14 - X 4X 5X 6 

116 : X 4 )(SX6X 7 '16 : X 4 X 5.\'6 X 7 

I 
x 7 l x 4X S I X5

X
6 I X5 X (' 

P4 : x 7 1(; : X 4X S 1'7 : X5 X 6 12 .\'5 

IJo : X 5X 7 III : XSX6 1'8 - XSX(l 1'7 : X5 X 6 

l!1 X 4X 5X 7 19 : X4X 6 113 : X 5X 6X 7 1'10 - X 5X 7 

112 : X4X 6X 7 IJ1 : X 4 )(SX7 '14 : X 4 )(5 X 6 '13 )(5 x 6)..'7 

X3 '13 - x S)..'6X 7 fl2 : ;Y4 X 6X7 1]5 : )(4.15 )(6 Jl 4 X4 X SXb 

Ii6 : X 4X 5X 6X 7 113 : X 5X 6 X7 Fi6 -X4 )(SX6X 7 '1(; : )(4 X SX 6X 7 

Fi5 - X 4X 5X 6 

IJ6 : X 4X 5X 6X 7 

x 2 

Fig. 3. A VEKM used as a cover map for the asserted part of the ISS in Example l. 
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5. Conclusions 

This paper has presented algorithmic VEKM or VEKM-related procedures to solve 
the classical covering problem, i.e., to obtain all the irredundant disjunctive forms of a 
switching function f and hence its exactly minimal sums when its complete sum is 
available. Dual versions of these procedures can be used to start with the complete 
product of f and end with all its irredundant conjunctive forms and its minimal 
product(s). Details of these dual versions can be worked out if one follows the duality 
rules in [6]. 

Many of the eXIstmg methods for handling the covering problem are easily 
adaptable to VEKM implementations. Notable among these are two methods described 
by Brown [1], the former of which is based on syllogistic reasoning [1, pp. 146-148], 
while the latter entails repeated tautology tests [1, pp. 117-118]. Also attractive is the 
method due to Hammer and Rudeanu [12, pp .. 285-294] which converts the present 
covering problem into one of minimizing a linear pseudo-Boolean function subject to 
linear pseudo-Boolean constraints. 
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