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Abstract. In this paper we present a new version of the polynomial correlation filter (peF) called constrained 
polynomial correlation filter (CPCF). We investigate the performance of this filter in the presellce of clutter 
noise. The peak-to-sidelobe ratio measure is evaluated for public MSTAR images. The effeet of different terms 
in the polynomial filter is examined by simulation. Then, we introduce a theoretical framework called energy 
proJection to predict the effectiveness of different terms in the cpcr 

/(c)'words Polynomia/filter, correlation filler, CPCF~ nonlinearjilter, MSTAR 

Introduction 

Correlation filters are 2-D spatial filters used to detect, locate and ciassl1y targets 
observed in noisy scenes [1-8]. A good filter should yield sharp correlation peaks for 
targets of interest, high discrimination against clutter and high tolerance to distortion in 
the target. To meet these desired criteria, several filters have been introduced in the past. 
A tutorial survey paper by Kumar [I] reviews many of these filters. 

Correlation filters are linear by nature, since their implementation relies on the 
computational efficiency ofthe 2-D FFT. However, we can still utilize the computational 
advantage of the FFT if we perform "restricted" nonlinearity on the input scene. 
Recently, Mahalanobis and Kumar [9] proposed a new nonlinear correlation filter 
architecture called polynomial correlation filter (PCF) for correlation-based pattern 
recognition. The input to this filter is the original scene and its point-by-point nth orders, 
where n is an integer. They derived a closed-form solution for the PCF. Preliminary 
simulations demonstrated that this type of filters can provide significant improvement in 
the peak-to-sidelobe ratio (PSR) compared to its linear counterparts. 
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I-Iere., we wish to investigate the performance of PCF in the presence of background 
clutter. As mentioned above, the filter performance is measured by high correlation peaks 
for targets and low correlation values for clutter. To make the analysis more tractable, we 
introduce a modified PCF called constrained polynomial correlation filter (CPCF). The 
main objective of this filter is maintaining the correlation peaks due to targets fixed for 
all polynomial filters. This makes the comparison between different filters easier since 
we need to compare only the filter's response due to clutter. No attempt has been made in 
this paper to compare PCF with CPCF. 

To predict the performance of CPCF, we propose a method cal1ed energy projection 
which depends on some linear algebra tools. Our attention here is on CPCF's which use 
polynomials of the f<.mn X+XIl, where n is an integer. We expect that this method can be 
generalized to predict the performance of wider range of nonlinear correlation filters. We 
study the effect of varying n on the clutter PSR. We also predict the performance of the 
(,per as n approaches infinity. To verify this method we perform many simulations 
using the public MST AR database. 

The organization pf this paper is as follows. In the next section, we present the 
theory of epCF. Then we evaluate the CPCF using images from the public MST AR. 
Finally we present the energy projection method which is used to analyze and explain the 
simulation results. 

Constrained Polynomial Filter 

In this paper, we will use the following notation: images are expressed as column 
vectors x by lexicographical scanning and xj represents the vector x with each of its 
elements raised to the power j. The complex conjugate transpose is represented by the 
superscripti. Matrices are represented by upper case characters. All filters, images and 
output in this section are represented in frequency domain. 

For simplicity, we will derive the second order polynomial filter which can be 
easily generalized to any other higher order. Our objective is to find the two filters, h 1 

and h2, where the input to these filters is x and x2
, respectively. 

Like any other constrained filter design, it is required to have a constraint Ci at the 
output origin due to ith training image, Xi, or 

(I) 

This equation can be rewritten as: 
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(2) 

We can define a block matrix R as: 

(3) 

where 

(4) 

For the block matrix R, the constraints in Eq. (2) can be rewritten as follows: 

R+h =c * (5) 

where 

C = [CI ... CNY (6) 

and 

h = [h1l h2 J 

(7) 

Here, we will work on the average similarity measure, ASM, metric which can be easily 
replaced by any other metric. From the peF paper [9], we can define the ASM as: 

This can be rewritten as: 

where 

A5M=h+ Sh 

5 = [511 512] 
521 522 

(8) 

(9) 

(10) 
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where S] 1 , S12 , S21 and S22 are all diagonal matrices. Minimizing the ASM in Eq. (9) 
subject to the constraints in Eq. (5) leads to the well-known solution: 

(11 ) 

Performance of CPCF on Public MST AR Images 

The CPCF derived above is examined using the public domain MST AR database. 
Our simulation is carried out on the 232 images ofT72 with serial number SN 132. 
Figure I shows samples of the T72 images. The number of aspect bins is selected to be 
12. The images are grouped according to the nearest aspect bin. The group of images in 
each aspect bin is used to build a CPCF filter. To test the filter response to clutter, we 
chipped out 539 clutter images from the clutter set. Equation (11) is used to find h for 
different polynomial filters of the form X+XIl, where n takes on the values 2, 3,4, 5 and 6. 
The peak to sidelobe ratio (PSR) of the filter output defined as 

PSR = peak - mean p - ~l 
standard deviation () 

Fig. 1. Sample Tn images from MSTAR database. 

was computed and used for evaluating the performance of each filter. For testing, we 
used the same training images. Then we tested the filters with the clutter scenes. In both 
cases, we computed the PSR. Figure 2 shows the PSR for target scenes (upper curve) and 
for cJutter scenes (lower curve) corresponding to CPCF filters of the form X+Xll, with 
n=2,3,4, 5 and 6. We did not show the PSR curves for higher order filters because we 
found out that they all almost replicate the curves of the x+x6 filter. For reference, we 
also include the result of the (linear) MACH filter [4] on the same figure. From this 
figure, one can see that the CPCF helps reduce the PSR of the clutter. In addition, we 
notice the similarity between the signal PSR of different CPCF. This is due to the design 
criterion (constrained output) used in designing the CPCF. Therefore, we may now 
restrict our attention to the behavior of CPCF with clutter images. For comparison 
purpose, we computed the PSR variance of the clutter for the five CPCF's considered 
here. This variance is depicted in Figure 3. In the next section, we analyze these results 
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and attempt establishing a theoretical ti'amework that can be useful in analyzing and 
predicting the behavior of CPCF. 
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Fig, 2. PSi{ evaluated for different filters. On each graph, the uppu CIII'Vl' represents the PSR due to 
taq~et SC(~IH'S, and the lowe!' cUl'Ve represents the rSR due to ciutter. 
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Fig. 3. PSI" varial1ct' dul' to duHl'r scenes fOl· different eper's. 

Analysis and Discussion 

8 x+x 

The polynomial filter can be viewed as a multi-sensor system, where the input to the 
detector is images taken from different sensors. However, here the additional image 
copies arc obtained by processing the original image through some nonlinear functions, 
Note that any linear transformation of the image is not useful since it can be incorporated 
in one (linear) filter. By generating nonlinearly transformed images, we hope that the 
target correlation from the different images will add up coherently, while the clutter 
correlation will add up noncoherently. 

In the sirnulations presented in the previous section, we consider point-by-point 
nonlinear transformation of the form XII. Therefore, the input to the CPCF filter is a pair 
of images, x and Xll. The optimization procedure used in deriving Eq. (II) will result in 
h:-, that is proportional to the significance of information in Xll. In the extreme case where 
Xll provides no new information, h2 will be set to zero. In this case, the performance of 
the cpeF is equivalent to the performance of its linear counterpat1. 
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To investigate the contribution of the second filter, h2' we perform the following 
~xperiment. We evaluate the contribution of the second filter to the peak output for target 
scenes. The output of the second filter is divided by the total output. This is averaged 
over all target scenes and displayed in Fig. 4. This figure shows that the contribution of 
the s~cond filter starts at more than 20% of the total output for n=2. As n gets larger, the 
contrihution of h2 becomes smaller to reach only 5% for n=6. As n approaches infinity 
the contribution will reach zero, in a negative-·exponential-like manner, and the CPCF 
hecomes equivalent to a linear one. We recommend here that the use of CPCF should be 
rc,'>tnctcd to the first significant few terms. 

Order, n 

Fig. 4. Contrihution of the second filter to the peak output relative to the total. 

The result shown in Figure 4 can also be used to explain the clutter PSR variance in 
Figure 3. Another way to assess the contribution of a second filter in CPCF is to look at 
the signal PSR relative to the clutter PSR. Since the signal PSR is almost fixed, a good 
filter should reduce the clutter PSR. When there is significant contribution from the 
second filter, it should help reduce the PSR of the clutter. Comparing the bar graphs in 
Figs. :3 and 4, we found that they complement each other; high peak contribution leads to 
low clutter PSR variance and vice versa. 

What happens when we raise the image, pixel-by-pixel, to the nth power'? Consider 
two pixels, with values a and b, where a>b. Raising each one to the nth power will make 
the second pixel relative to the first one bll /all. If a is the highest value in the image, then 
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all pixels with lower values will be reduced. If n gets very large then all points are 
suppressed except the peak values. In frequency domain, raising an image to the nth 
power is equivalent to n-I convolutions. Several convolutions result in broadening the 
image in frequency domain. This translates to sharp spikes in the spatial domain. Usually 
an image has only small number of peaks, which will dominate the scene. In effect, 
raising an image to the nth power results in a scene with smaller target (after 
normalization.) Experience shows that the performance degrades with smaller targets. 

The argument presented above, although plausible, does not address the linear 
dependency between images. To have better insight into this important issue, we present 
the following framework based on linear algebra basics [10, 11]. Consider the vector 

subspace., X. spanned by the set of all training images (in one aspect bin.) We perform 
Gram Schmidt ortliogonalization procedure [10,11] on all images in X to obtain a set of 

K orthonormal basis vectors u h U2, ... , UK. If the image f(x) lies in X. then this 
transformation, f, is not useful since it brings no new information, no matter how large is 
the target in t{x). This is contrary to the simple view given above. One can verify from 
the given images that, in genera!, Xll does not lie in X for n> I. 

Fig. 5. Energy projection for different CPCF's. 
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We can write xn as (see Fig. 6) 

4 
X 

~X2 X 

~ 

X"tt 

Fig. 6. Geometrical representation of x" and its projections on X subspace. 

x subspace 
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where XnII is the projection of Xll on X and XllJ is its orthogonal component on x. 
Therefore, we write 

K 
xH = :L(utxn)u i 

i=l 

The angle, 8, between Xll and X defined as 

gets larger as n increases (see also Figure 6). In the same time, as explained above, the 
energy of the target in xn

, after normalization by its peak, gets smaller. We propose the 
image energy projection to predict the significance of raising an image to the nth power. 

Consider i\ a vector subspace that is spanned by the set of all training images, say 
N images, raised to the nth power (in one aspect bin.) We subtract from each image in l 
its projection on X to get the orthogonal component XI1

J defined as 

n 11 II 
X J =x - X II 

The result is a set of images, xn J j, j= 1 ... N, that are orthogonal on x. We suggest that the 
energy of this orthogonal set can measure the significance of l. This energy is evaluated 
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for each set of images in one aspect bin, and then averaged over all bins, say L bins; 
namely we evaluate the average energy, E, as 

__ 1 N~LII n Il2 E- L x~. 
NxL i=l I 

The result is shown in Fig. 5. We see from this figure that the energy projection 
follows the same trend as the signal contribution shown in Fig. 4. Higher energy 
projection implies higher contribution to the peak from the second filter. Thus, we can 
predict the significant of any term in the polynomial without computing the filter's 
coefficients. This handy tool needs further investigation should it be used in a general 
nonlinear correlation filter. 

Conclusions 

We presented a modified polynomial correlation filter called constrained 
polynomial correlation filter. We demonstrated the advantage of polynomial correlation 
filters through simulations on public MSTAR database. A polynomial filter consists of 
terms raised to different powers. In order to investigate the significance of different terms 
we used three approaches. In the first approach, we calculated the variance of clutter 
PSR. In the second one, we calculated the contribution of the second filter to the target 
correlation peak. 

The third approach is cailed energy projection. We measured the significance of 
raising an image to the nth power by computing the energy of its orthogonal component 
on the image's subspace. There is a high agreement between the results of these three 
approaches. They all suggest that the CPCF highest order should be restricted to 4 or 5. 
The advantage of the third approach is that it does not require computation ofthe actual 
filter. We expect that the energy projection method can be a base to establish a general 
theory for the evaluation of any point-by-point nonlinear filter. 
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