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Abstract. The Method of Moments is often used to accurately computc the radiated or scattered fields from 
simple or complex structures. However, huge computer memory is required when utilizing it to solve 
ekctrically large structures. And, even if the available computers satisfy the memory requirements, the needed 
CPU time is often very long. In this paper a technique that can be used to reduce the required CPU time for 
computing the [Z] matrix elements is described. This technique utilizes the possible symmetry in the problem. 
An example involving the computation of the scattered fields from a largc triangular dihedral is worked out in 
detail with CPU time reduction up to about 75%. 

Introduction 

The Method of Moments (MM) is often used to accurately compute the radiated or 
scattered fields from simple or complex structures. However, huge computer memory is 
required when utilizing it to solve electrically large structures. Even if the available 
computers satisfy the memory requirements, the needed CPU time is often very long. It 
is true that faster computers with large memory capacity, along with advanced processing 
algorithms can help in solving such problems in a direct manner. However, user 
demands to solve electrically larger problems often reach the limit of any available 
computing resources. 

In some problems, such as scattering from plate structures, it was noted that the 
main portion of the CPU time is consumed in the process of computing the [Z] matrix 
elements. The rest of the CPU time is for inverting the matrix and computing the fields 
[I]. The matrix inversion share of the total CPU time increases with the increase of the 

69 



70 Zeyad O. Alhekail 

number of matrix elements, and can become the main share for relatively large problems. 
That depends on the nature of the moment method code and the way it computes the 
matrix elements as well as on the computer vectorization capabilities. 

The CPU time required for computing the [Z] matrix can be dramatically reduced 
by utilizing the possible symmetry in the problem. Such symmetry may not be very 
obvious, but it is not always difficult to observe. In this paper, a technique to reduce the 
required CPU time for computing the [Z] matrix elements is exr 1 . :led. This technique 
utilizes the possible symmetry in the problem. An example involving MM computation 
of the scattered fields from a large triangular dihedral using the ESP4 code [1] is worked 
out in detail with CPU time reduction of about 75%. Some notes are also given on the 
use of this code for solving plate-modeled structures. Note that this technique is only 
concerned with computing the [Z] matrix elements and hence it is valid for any direction 
of incidence. 

Triangular dihedral 

Figure I shows a triangular dihedral consisting of two triangular plates. The plates are 

such that L} =2m, L2= 1m and (j/ = 90°. The back or bistatic scattering from such a 

structure is an interesting problem that involves different scattering mechanisms and has 
been investigated in several studies [2,3,4,5,6]. The need for accurately analyzing the 
scattered fields from dihedral structures arises in several situations; for example, when 
using the dihedral as a calibration target in scattering measurements or when a reference 
solution is needed for checking another method's result. 

y 

1 
x Ll 

L~ Dihedral 
(a) Top view (b) Front view 

Fig. I. Tl"iangular dihedral. 

For reasons to be clarified later, let us use a 4-plate model for the dihedral, such as 
shown in Figure 2(a). Also, let us use the ESP4 code, which is a MM code, to solve for 
the scattered fields from the dihedral. The code solves for the currents induced on the 
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dihedral surface by an incident electromagnetic field, say a plane wave. The scattered 
fields are then computed using radiation integrals. This code uses the Electric Field 
Integral Equation to relate the unknown induced currents to the incident fields. The 
unknown currents are expanded in terms of N surface patch modes that cover each plate 
such as shown in Fig. 2(b). In Fig. 2(b), the plate is divided (segmented) into a set of 
quadrilateral surface patches. The current modes have a piecewise sinusoidal function 
that covers two patches. That is indicated in the figure by placing arrows (which 
represent modes) such that every arrow covers two patches, i.e., the patches covered by 
that mode. Overlapping modes that cover the junction between any two plates are also 
included in the expansion of the unknown currents such as shown in Fig. 2(c). That 
leaves us with the following unknown current vectors [ld,[12],[13],[14],[lu],[IL2],[IL3]' 
and [llA] that correspond to the currents on the plates in the way shown in Figure 2(d). 
Then, by enforcing the Electric Field Integral Equation for N linearly independent test 
modes, one obtains an NXN simultaneous linear equations, which can be written as 

[Z] I = V 

where [Z] is the NXN impedance matrix, V is the voltage vector with length N, and I is 
the unknown current vector with length N. These linear equations can then be solved for 
the unknown currents. 

Plate #4 Plate # I 

Plate #3 Plate #1 

(a) 4-plate model for the dihedral 

(c) Overlapping current modes 

between two plates 

(b) Current Illod(;s on a plate 

Fig. 2. 4-plate model and current arrangements for the triangular dihedral. 
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The impedance matrix is the main concern of this paper and can be written as 
shown in Fig. 3. The element Zmn of [Zj is called the mutual impedance between the 
current modes In and n. Computing the elements of such a matrix involves many 
computations and can consume a long CPU time. This, however, can be reduced by 
utilizing the symmetry of the structure under consideration. For example, one can say 

that Z"'I1= ±. Zkl if mode In is identical to mode k and mode n is identical to mode I and 
the relative position of mode k to mode I is the same as that of mode m to mode n. The ± 
sign is to accommodate for differences in the directions of the assumed reference 
currents, as will be seen towards the end of the next paragraph. 
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Fig. J. The impedence matrix IZI. 

The [Zjmatrix of the triangular dihedral problem can be defined by blocks such as 
those shown in Fig. 3. Block (1/1) (the upper left) contains the mutual impedances 
between the current modes of the first plate. Block (112) contains the mutual impedances 

between the current modes of plate #1 and the current modes of plate #2. Likewise, 

block (L ,/Lt) contains the mutual impedances between the first overlapping current 
modes. Block (LI/l) contains the mutual impedances between the first overlapping 
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current modes and the first plate current modes. Every block is labeled with a capital 
letter ( A,B,C, .... ). Only blocks labeled with an underlined bold letter need to be 
computed. The other blocks can then be filled according to the labels. For example, 
block (211) is labeled with "B"; that means that the elements of block (2/1) are identical 
to block (112) elements. Also, the elements of block (L3/4) are equal to the negative of 
the elements of block (L211). The relations of Figure 3 are evident from the symmetry of 
the problem. For example, blocks (111), (2/2), (3/3), and (4/4) are the same because 
plates 1,2,3, and 4 are identical and have identical segmentation. Also, block (2/3) is the 
same as block (1/4) because plate 2 current modes are identical to plate I current modes, 
plate 3 current modes are identical to plate 4 current modes, and the locations of plate 2 
modes relative to plate 3 modes are the same as the locations of plate I modes relative to 
plate 4 modes. Likewise, block (L4/4) elements equal the negative of(L\/l) elements. 
That is because L4 modes are identical to Ll modes, plate 4 modes are identical to plate 
I modes and the locations of L4 modes relative to plate 4 modes are the same as the 
locations of L} modes relative to plate 1 modes. The only difference between the two 
cases is the reference current direction. L \ modes reference current is flowing out of 
p late I while L4 modes reference current is flowing into plate 4, leading to the (-) sign in 
the above relation. Note that, in general, the [Z] matrix is not symmetric. It is 
symmetric if the test modes used in enforcing the integral equation are the same as the 
expansIOn modes [1]. So, the relation Zmn=Znm only holds when modes m and n are 
identical. 

One can see that this technique can save up to about 75% of the CPU time required 
for computing the [Z] matrix elements. Figure 4 shows the CPU time required to 
compute the [Z] matrix elements versus frequency, with and without using symmetry. 
The figure should be viewed as if it shows only a relative time, since it greatly depends 
on the machine and its compiler and vectorization capabilities. But, for the sake of an 
example, on a CRA Y YMP computer, the CPU time needed to compute a 264X264 
matrix was 68 seconds. The use of the symmetry mentioned above reduced that time to 
17. 1 seconds. A 1680X 1680 matrix computation consumed about 650 seconds on the 
same computer, using symmetry. Without using symmetry that time would have been 
about 2600 seconds. For reference, the CPU time to invert this matrix and to compute the 
radiated fields was about 100 seconds. Note that this latter time is relatively short 
because of the available vectorization on the CRA Y computer. On a non-vector 
computer, the matrix inversion time would be more than the computation time for such a 
large matrix. For the interested reader, Figure 5 shows the X-Z plane. -Polarized back 
scattered field from the dihedral at 1 G Hz. 
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Fig. 4. The CPU time required to compute the [Z] matrix elements versus frequency with and without 

using symmetry. The dihedral dimensions are L l =2m, L2= 1m and \j1 = 90 a • 
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Fig. 5. The a-polarized backscattered field from the dihedral at IGHz, X-Z plane. 
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Modeling and Segmentation Issues 

The ESP4 code utilizes one method for plate segmentation, such as shown in Figure 
2(b). Such a method is general and does not take advantage of the nature ofthe plate that 
needs to be segmented. That results in an inefficient segmentation of the plates, i.e., more 
unknown current modes, and hence requires more computer memory, when compared to 
other possible segmentation methods. In fact, the above 4-plate model for the triangular 
dihedral results in fewer modes than a 2-plate model, using the default ESP4 
segmentation method (routine) in both cases. This is because of the general nature of the 
segmentation routine. Using a lO-plate model for the dihedral, such as the one shown in 
Fig. 6(a), results in an even fewer unknown current modes. A better approach is to 
"custom make" a segmentation routine for the problem under consideration. For 
example, one can segment the dihedral plates as shown in Fig. 6(b). Such a segmentation 
approach results in about a minimum number of unknown current modes. But, one needs 
to make sure that such segmentation methods produce convergent results before the 
resulting solution can be trusted. 

7 2 
10 5 

8 3 

(a) (b) 

Fig. (,. a) IO-plate model for the triangular dihedral. b) Custom segmentation for the tt-iangular plate. 

Figure 7 shows the number of unknown dihedral current modes versus frequency 
for the above mentioned four segmentation methods. In all cases the maximum segment 
width is 0.2 wavelength. One can see that the 4-plate model results in a smaller number 
of modes when compared with the 2-plate model. Note that unlike the 2-plate model, the 
4-plate model permits an efficient use of the structure symmetry, which is the reason 
behind choosing the 4-plate model at the beginning ofthis section. The 10-plate model 
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requires less computer memory and CPU time when compared to the 4-plate model. 
However, utilizing the structure symmetry in the lO-plate model is more complicated. 
The custom made segmentation with the 4-plate model results in the smallest number of 
unknown current modes, compared to the other 3 models, and hence the minimum 
required computer memory and CPU time. 
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Fig. 7. Number of current modes versus frequency for 2-plate, 4-plate, and lO-plate models for the 
triangular dihedral with the ESP4 code segmentation, as shown in Fig. 2(b). Also shown in the 
figure is the number of current modes for the 4-plate model with custom segmentation, as 
shown in Fig. 6(b). In all cases the maximum segment width is 0.2 wavelength. 

This technique can be utilized to solve other electrically large problems. One 
should start by dividing the structure into smaller substructures that show some similarity 
in the size and shape, and relative locations to each other. The [Z] matrix is then formed 
of blocks for self and mutual impedance of each substructure elements as well as blocks 
for the mutual impedance between different substructure elements. One should carefully 
review the problem and try to find similarity between the [Z] matrix blocks and, only 
compute the minimum number of blocks. Changes and refinements to the substructure 
choices may be needed. 
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Conclusions 

A technique that can save about 75% of the CPU time required for computing the 
MM [Z] matrix elements is described. This technique utilizes the structure symmetry that 
exists in the problem. It requires extra work and specific treatment for every new 
problem. However, accurate solutions to some problems are always desired, especially in 
the absence of measurement results. Lack of measurement's facility or the unacceptable 
cost or time required for building measurement's model(s) could make this technique's 
extra work justifiable for several interesting problems. Also, the process of utilizing the 
symmetry in the problem can be simplified or built in the moment method codes, leaving 
the user with minimum work to do. 

It was noted that the [Z] matrix size depends on the method used for segmenting the 
plates making the structure under consideration. Designing a specific segmentation 
routine may result in a reduced number of unknowns and hence less memory and CPU 
time requirements. Further CPU time and memory reduction may be achieved by 
considering current symmetry, which exist .for specific planes of incidence, i.e., the 
principle planes ofthe dihedral (Y -Z and X-Z planes). 
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