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Abstract. The complete sum (CS ) of a switching function f is defined as a sum-of-products formula whose
products constitute all, and nothing but, the prime implicants of f. It has many useful applications including the
simplification and minimization of switching functions, proving equivalence or independence, solution of Boolean
equations, and transient hazard analysis. This paper presents two novel techniques tor deriving the CS with the aid
of the variable-entered Kamaugh snap (VEKM); a map that enjoys several pictorial advantages and a doubled
variable-handling capability, and hence is recomunended when  the number of variables ranges from 7 t0 12 or
even more. Only completely specified switching functions (CSSF¥) are considered herein, simply because the CS
of an incompletely specified function fis that of the CSSF that represents the upper bound for f. Qur first technique
uses the VEKM for obtaining any product-of-sums expression for the function which can be multiplied out (o
produce the CS after deletion of any absorbable terms. The second technique starts with a VEKM of CS entries,
and after repeated folding of the VEKM ends up with the required C'§ provided necessary absorptions are
implemented after each folding. Buth techniques gain much from the use of a novel multiplication matrix that
restricts the number of term comparisons needed for implementing absorpions. This matrix can be used to
advantage also with some purely algebraic techniques such as Tison method. However, algebraic techniques, even
after improvement, might remain inferior to VEKM techniques, obviously since the latter can combine most merits
of map and algebra. Dual versions of the VEKM techniques considercd can be used to obtain the dual of the
complete sum, viz., the complete product.

Introduction

The complete sum of a switching function f, o be denoted by CS(f ), is the all-prime-
implicant disjunction that expresses f, i.e., it is a sum-of-products (s-o-p) formula whose
products are all the prime implicants of f. The complete sum is also known in the
literature {1,2] as the Blake canonical form of the switching function. Since all the prime
implicants of f are present in CS( f ), it is obviously unique and hence stands for a
canonical representation of the switching function. The complete sum for the

incompletely-specified switching function (ISSF)f =gvd (h) is that of the associated
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completely-specified switching function (CSSF) f; =gvh. This mcans that a study of

the complete sum always involves a CSSF and does not really involve an [SSF.
Henceforth, when we refer to a switching function f, we understand it is a CSSF.

The concept of the complete sum of a switching function f is closely related to that
of a syllogistic formula for f [1,2]. However, while CS (f ) is unique and canonical,
there are infinitely many syllogistic formulas forf. A syllogistic formula of f can be
defined as an s-o-p formula whosc terms include, but are not necessarily excluded to, all
the prime implicants of f,i.e., it is thc complete sum of f disjuncted (possibly) with
terms cach of which subsumes some prime implicant of f Each of the following
formulas are syllogistic formulas:

(1) acomplete-sum formula,

{b) an alterm ( a disjunction of single literals),

(¢) an s-o-p formula of monoform literals only,

(d) an s-0-p formula such that no two terms in it have a consensus that does
not appear in the formula.

If we compare the definition of a syllogistic formula for f to that of its complete
sum CS (f), we note that CS (f ) is minimal within the class of syllogistic formulas for
/. 1e., the set of terms in any syllogistic formula for fis a superset of the set of terms in
CS {f). Hence CS (f) can be represented by ABS( F ), where F is any syllogistic formula
for f and ABS (F) denotes an equivalent absorptive formula of F, i.c., a formula
obtained from F by successive deletion of terms absorbed in other terms of F.

Obtaining the complete sum is the first important step in deriving the irredundant
disjunctive forms and, in particular, a minimal sum of a given switching function, and
conseguently constructing economical networks for the function. Since the complete
sum is a canonical representation, it is useful in proving the equivalence of two switching
expressions. Also, it is useful in simplifying switching expressions or detecting if a
function independent of some variables [3}. The complete sum is very crucial in transient
hazard analysis [4]. Its evaluation is the basic instrumental tool of Boolean reasoning and
the solution of Boolean cquations [1]. In fact, a systematic method for finding all prime
implicants of a switching function can enable logicians to ferret out hidden implicants
and therefore, hidden logical conclusions from a given set of premises [2].

In view of our defmition of CS (f ) as ABS( F ), it is obvious that CS (f ) may be
generated by the following two-step procedure: (a) Find a syllogistic formula £ for f* and
(b) Delete absorbed terms to obtain ABS( F ). Many techniques exist in the literature for
carrying out step (a). These are categorized by Brown [1] into the three basic approaches
of exhaustion of implicants, iterative consensus and multiplication. In the following two
sections we present novel versions of the multiplication and iterative consensus
approaches, which are implemented through the use of the variable-entered Karnaugh
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map {(VEKM) [3-15] and are hence referred to as VEKM multiplication and VEKM folding,
respectively. The VEKM is an extended version of the conventional Karnaugh map (CKM)
which retains most of its pictorial merits while improving its capability to handle larger
numbers of variables andfor functions whose intrinsic structure is more complex. We also
intreduce a novel multiplication matrix that has the distinct advantage that it minimizes the
number of comparisons needed in the cumbersome step (b) above of deleting absorbed
terms. An offshoot outcome of this paper is given in section IV wherein our matrix
multiplication is used to improve Tison method, which is a classical purely algcbraic
method for obtaining the complete sum. This achievement is self rewarding since we rely
on Tison method for sccuring CS formulas as VEKM entries. Even after improvement,
Tison method remains inferior to our VEKM techniques, provided the number of vanables
used is not very small. Final comments on the paper are given in its concluding section
(section V) This paper contains some specialized, albeit standard, terminology and concepts
of switching theory. A uscful reference on these is the excellent and lucid text by Muroga
[3]. To make the paper more self-contained and easicr to read, we supplement its main text
with 2 appendices covering non original matcrial. Appendix A is a brief introductory
tutorial on the VEKM. Appendix B introduces Tison method and illustrates it with an
example that enables the reader to appreciate the improvement proposed hercin.

VEKM Multiplication

The present section discusses a VEKM implementation of the multiplication method
for obtaining the complete sum of a switching function. According 10 Brown [1], the
credit of this method should go to C. S. Peirce, though it is now frequently attributed to
Nelson [16). The essence of this method is given in Theorem 1 to follow. For a proof of
this theorem, the interested reader may refer to [1].

Theorem 1: Let a switching function f be expressed as a conjunction of syllogistic
formulas and multiply out to obtain a sum-of-products (s-o-p) formula using the
distributive laws. This s-o-p formula is a syllogistic formula for . Then, use idempotency
of AND to drop duplicate literals and use absorption Lo delete any term that subsumes
another. Now, the final formula is the complele sum for f.

It is clear from Theorem 1 that the multiplication technique guarantees the generation
of all the prime implicants of f, i.e., it is a substitute for consensus generation. However,
the technique is still burdened with the two tasks of (a) multiplying out formulas, and (b)
implementing absorption. Note that, in particular, the expansion of a conjunctive form into a
disjunctive one is usually very-time consuming. Use of certain identities, which might be
labeled as intelligent multiplication, is usually helpful [1, p.85]. Of paramount importance is
the identity

xvy)xvz)=xvvz, (h

which is useful notonly in VEKM multiplication, but also in VEKM folding, as we will
see later. Other useful rules are also given in |3, pp. 182-183]. There are faster means
for achieving the purpose of multiplication (viz., the derivation of all prime implicants)
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without really having to expand a conjunctive form into a disjunctive one. One such
means advocated by Muroga {3] is that of the semantic tree method.

As a special case of Theorem 1, a syllogistic formula may be produced by
multiplying out a conjunction of alterms, i.e., a product-of-sum (p-o-s) formula. In the
present section, we make use of this special case wherein a VEKM is utilized to obtain
the required p-o-s formula. Note that such a formula need not necessarily be minimal,
though the simpler it is the better.  Therefore, we can implement the VEKM dual
procedure in [11] without worrying too much about minor details that arc needed for
exact minimality.

Whenever we multiply only two sums of products at a time, it is convenient to
construct a multiplication table or matrix. The horizontal keys of this table are the terms
of onc sum and its vertical keys are the terms of the other sum, while its entries are the
terms resulting from multiplying out the two sums. Figurel shows typical keys and

entries of such a table, where we use the symbol {i}Tj} to denote the product of the
two terms P and T after deleting any repeated literals (thanks to the idempotency

of  AND). Of course, if the terms £ and T; have at least one opposition, i.c., one

litcral that appecars complemented in one of them and uncomplemented in the other,
then {PiT,- }is 0.

Now, we observe and prove a new interesting and useful property of the proposcd
multiplication  matrix. Suppose that the product {P,Tk} subsumes {(and hence is
absorbed by) the product {};Tj}which lies in a different row (i 2 r) and a ditferent
column (,j # k). This means that the set of literals of {Per} is a superset of the
set  of literals of {PiTj}and hence it is a superset of cach of the sct of literals
of £ and thatof T;, and hence {P,’I‘k} subsumes both 72 and 7 ;. By construction,
{P,.’l'k} subsumes both £, and T, . Now, since {P,,Tk }suhsumes the four terms &,
T;» 7, and7,, it subsumes each of the two products {i;-Tk} (which lies in the same
column  as {Per }) and {PrTj }(which shares the same row as {P,.Tk }). In conclusion,
if a general product {Per} is to be ever absorbed by another product in the table, then we

can [ind an absorbing product for it either in the same row r or in the same column k. To
change the disjunction of products in the table into an absorptive formula, there is no
need to compare every product with all other products in the table. Instead, every
remaining nonzero product in the table is manipulated as follows: Either this product is
absorbed in another in the same row or column or it stays unabsorbed. The number of
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comparisons needed to implement the ABS (.) operation is limited in the worst case to
that of comparing each nonzero product to the nonzero products in its row and column.

-

)
S
N
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Fig. 1. The general layout of the multiplication table of two sums of products.

Example 1:

To give a simple illustration of the above procedure, we use a CSSF of 5 variables
only, though VEKM techniques arc usually more competitive for a larger number of
variables. Let this CSSF be represeated by the VEKM in Fig. 2. A standard VEKM

procedure (see Appendix A and Fig. 3 ) produces the following minimal p-o-s formula
for f

f=(AVBVC)(CVD)(EVDVE)(AVEVEVE) @
(AvBvDVE)



244 Ali M. Rushdi and Hashim A. Al-Yahya

A
|
0 D D
C DvE E DvE
- 1 i
B
Fig. 2. A VEKM representation of a CSSF f (A,B,C,D,E).
A

@

(a) Co'(0)=AvBvC

Fig. 3(a). The dual contribution of the entered alterms for the function in Fig. 2.
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d d d d
C d 0

(c) Co'(D v E)= B

Fig. 3(b,c). The dual contribution of the entered alterms for the function in Fig. 2.
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(d) Co(E)=AvBvC
A
|
d d d
C 0

B
(&) Co(DVE)=AVB

Fig. 3(d,e). The dual contributions of the entered alterms for the function in Fig. 2.
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Using (1) to multiply out the second, third and fifth alterms (which have the literal
D common to all of them), and multiply out the first and fourth alterms (which have the
literal A common to both of them), we have

f=(DVC(EVE)(AVBVE))(AV(BVC)(EVEVE))
- (o v ABC v ACE v BCE v BCE) 3
(AVBEVBEVECVCE)

Now, we usc the matrix in Fig. 4 to implement the multiplication in (3). Note that we
use a ( __ } whenever cancellation occurs, i.c., whenever the product of two terms is 0.

A A BC BE BC CE
D AD BCD BDE BCD CDE
ABC ABC R —_— @
- | a -
ACE ACE —_
4
;
v
BCE - BCE S
acE | * _— — K:E —

Fig. 4. Matrix multiplication of two sums of products.
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As pointed out earlier, the matrix multiplication allows an easy tracking of
absorptions because of the fact that if a term is to be ever absorbed, then one of its
absorbing terms will belong to either its row or o its column. Therefore, we restrict our
search for an absorbing term to the same row or column as that of the product which is a
candidate for being absorbed. When an absorption relation is discovered it is indicated
by an arrow {rom the absorbed product to the absorbing product. As shown in Fig.4, such
an arrow should be either horizontal or vertical. The absorbed term is now circled but it
is not excluded from further consideration as a possible absorbent of other terms. After
all absorption possibilities are exhausted, 9 products remain in Fig. 4 which we set in
bold. Thesc constitute all Pls of £ i.e., their disjunction is CS ( f).

VEKM Folding

The basic idea of VEKM folding is derived from the Boole-Shannon expansion of
a switching function f(x ) abouta single variable x; [1,11], namely

£(0)= (s v (i v )

- 4)
=Xj fgvX; fyvigfy,

where f, = f / ;i and jj = j‘/ X; are the subfunctions or ratios of f obtained by
restricting the variable X, initto O and 1, respectively. To obtain CS(f), let f;, £ in

(4)be givenby the CS formulas Fy, and £, and reduce (4)to the following form

csif)=asslxi Iy vX; F v F,) (5)

A formal proof of equation (5) is given by Recusch [17]. This equation has the
VEKM interpretation depicted by Fig. 5. The VEKM in Fig. 5(a) has 2 cells with C§
entries and the corresponding VEKM in Fig. 5(b) has a single cell with a CS entry. Now,
we may view the function f in the previous discussion as a subfunction of some other
function, which leads usto suggest the following repeated folding. If the n-variable
CSSF ¢ (X) is given by a VEKM of m map variables, 0 <m < n, with CS entries,
then we can eliminate the map variables, onc by one, by folding the VEKM with
respect to the boundary of the map variable to be climinated, X, say. In such folding,
the number of map cclls is halved while each pair of map cclls with opposite values
of x; and common values of the remaining map variables is replaced in accordance
with Fig.5 by a single map ccll of these remaining map variables. Since the starting
VEKM has CS entries in all its cells, the resulting VEKM also has CS entries in all its

cells, The procedure terminates when we obtain a VEKM of no map variables which is an
algebraic expression of the CS.
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(a) s (X ) with CS subfunctions.

ABS(X; F, vX, F, vF,F)

(b) 7(x) in €S form.

Fig. 5. The 2-cell VEKM in (a) with CS entries is folded into a single cell in (b) with a C§ cntry.

Therc arc three classes of terms in (5), namely thosc in ;,' Fy, X; Fand Fy R,
where the CS formulas K, and 7 are independent of X;. Table | explores the
possibility that an absorbing term and an absorbed term may belong to a certain
combination of these classes. It is not possible for any term in (;i ) or (X, 1) to

absorb any other term. This observation was earlier noted by Brown [1, p. 82]. In other
words, it says that absorbing terms helong only to ( #, F ) and can cause the absorption

in terms belonging to ecither (X; Fy)or(X; F)or (F F)itself. In view of this fact

and of (4), we propose the construction of the multiplication matrix in Fig. 6 to represent (5)
in the form

cs(f)= ABs ((F, v Xi )A(FO vx;)) (5a)
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Table 1. On the possibility that an absorbing (subsamed) term and an absorbed (subsuming) term may
belong to a certain pair of classes of terms

Absorbing
term in
X; Xif oy By
Absorbed ifo
term in
Impossible; Impossible; possible
Xi K isa CS A teom with the X; literal does
Risa not subsume one with the X;
literal
Impossible; impossible; pussible
A term with the X literal does
XiF not subsume another with the .
Xj literal RisaCs
impossible; impossible; possible
A term without the X; literal A ierm without }he X literal
Fa Ky does not subsume 2 term does not subsume a term
having it having it

The main task in Fig.6 is to find the terms in the matrix (/, /) first,

and then delete absorbed terms among them, making use of the fact that i a term can be
ever absorbed, then it can be absorbed by aterm belonging to the same row or column.

Next, we consider terms of the column vector Xx; F, andsee whether either of them
is to be absorbed by any oftheterms in the same row belonging to £y F.
Similarly, each term in the row vector x; F; is checked for possible absorption

against a term in ( Fy F ) that lies in the same column,

A A x;
=
R F)R e X;F,
4
X, Xk —_

Fig. 6. A graphical illustration of Eq. (5a). the dotted arrows imply possible termwise absorptions.
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Fig. 7(a). Repeated folding of the VEKM in Fig. 2. (a)
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Fig. 7(b). Repeated folding of the VEKM in Fig. 2.
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A A
~ | DE|BD|BE|BE| C Bf D E | C BDE v BCE
« v CDE v BCD | DvBCwvCE
) IR W ’ " "D | DE v BCE v BCE
Bp|BDE| __ | __ [BDE] BCD -
BC CE

[4Y4

eAYR L[V "V WIYSEH pUe Ipysny ‘W 1V
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Fig. 7{c). Repeated folding of the VEKM in Fig. 2.

Example 2 (Example 1 revisited)

The VEKM in Fig. 2 has CS entries. It is folded in Fig. 7(a) with respect to the map
variable B, then in Fig. 7(b) with respect to C, and finally in Fig. 7(c) with respect to A. For
instructive purposes, we are writing the pertinent subfunctions as products of a matrix
multiplication in accordance with Fig. 1, Absorbed terms are circled and deleted. Of course,
it is not necessary to actually construct all the multiplication matrices for the earlier simple
and numerous subfunctions in Figs.7(a) and (b) where algebraic manipulation can be
straightforward. The use of a multiplication matrix in Fig. 7(c) is, however, a saving from
remaining products in Fig. 7(c) are set in
bold. They are exactly the same 9 Pls obtained previously in Fig. 4.

tedious and cumbersome manipuiations. The

A D BC CE A
BDE BDE BCDE ABDE
BCD BCD i @

4.. .....
—_— _ P R PR R . .

CDE 4 CDE CDE

Fcp BCD .. ABCD
o | Gons - T —

BCE BCE -4

A AD ABC ACE

(c)

253
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Now, we consider an important simplification for the rules of VEKM folding. Let
the two CS formulas F, and F in (5)or (5a)have some common terms that are

given by an s-o-p formula T, namely

H=Tv Gy, (63)
F=Tv G, (6b)

where G, and G, are the s-o-p formulas that remain after excluding the common
terms T from £, and A, respectively. Note that since the terms of T are a subset of
those of the CS s F, and £, the formula T must be absorptive. In fact, it is the sum of all

the prime implicants of F that are independent of X,. Now, Eq.(5a) is replaced in

accordance with (1) by

cs{f)=aBs ((TVG]V—)Zi)A(TVGOVXi)) (7a)
= ABS[Tv(Gy v X;)a (Gg v Xi ).

which can be further simplified to
CS() = Tv ABS (GoG v X;Gp v X{G1).- (7b)

Equation (7a) is represented by the multiplication matrix in Fig. 8§ while Eq. (7b) is
represented by its simplified version of Fig. 9. In Fig. 8, solid arrows denote actual
termwise absorptions by terms in the same row ( for horizontal arrows) or by terms in the
same column (for vertical arrows), while dotted arrows indicate possible absorptions,
The following comparisons suffice for implementing absorptions, wherein comparison
continues till the compared term is absorbed or till the set of terms to which itis
compared is exhausted.

a) Compare every nonzero term in the column vector X,G, lo nonzero
terms in the same row in the matrix GG, and (o terms of 7.

b} Compare every nonzero term in the row vector X;G) to nonzero terms in  the
same column in the matrix GyG| and to terms of T.

c) Compare every nonzero term in the matrix GuGy to nonzero lerms in
the same row or the same column of the matrix GyG, and to terms of 7.

Equation (7b} can be used in its simplified graphical form of Fig. 9 to simplify the
multiplication matrix in cell AC in Fig. 7(a) and thatin cell A in Fig. 7(b).
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N T G 5‘:1
4 +—
£
G 0 i rreress + ...... GOG'I [ TITTTTRR SR leo
_ A
X, _@4 .............. XlGl )

Fig. 8. Hlustration of the multiplication in Eq. (7).

A Gl Xi
T - &y Gy -
' ........
................ 1
. XiGy -

Fig. 9. A simplification of Fig. 8.
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An Improved Tison Method

It is instructive to note that our result (7b) represents a typical step in Tison method
for obtaining the C§ of a CSSFf(see Appendix B). The only difference is that Tison
method (in any step other than the last one) neither neccssitates nor guarantecs (he

use of CS expressions Fy, £ but might use other expressions for the functions
fo and f. That is why it docs notyield a CSfor f in a single step, but has Lo

repeat its typical step for all biform variables X;. In fact, the typical step in

Tison method starts by amranging a given expression for f with respect to a biform
variable X; in the form

f -——goii vgr¥Xi v, 8)

where gy, g, and ¢ are formulas that are independent of X, . Next, f is augmented
by all consensi between terms in gOJ?:- and g,x; (which turn out to be the

nonzero products in gpg), and  then subsuming terms are absorbed. The method
repeats this typical step for all biform variables ending with the CS of f after the last
step. If in Fig, 9 we use the lower case letters g5, g1, and ¢ to indicale general s-o-p

formulas and not necessarily the CS  formulas Gy, G;, and 7, then Fig. 9

suggests an ecenomic layout for implementing Tison method with a restricted number
for the comparisons needed for implementing absorptions. In such a layout arrows should

be added from tto g,g, and to titself since t (unlike T) is not guarantced to consist of

prime implicants only. However, the need to consider possible absorptions of lerms of
t as implied by these arrows gradually diminishes and ceases to exist for the last step at
which t becomes a disjunction of prime implicants only This observation is particularly
useful {or our present techniques, since we usually rely on Tison method for securing
initial VEKM entries in CS forms. In the following example, we demonstrate our matrix
implementation of Tison method. We observe that this improved version of Tison
method (though much better than the original version) remains inferior to VEKM
techniques, mainly because it handles large matrices right from the beginning and it
requircs a cumbersome step of rearrangement of terms at each step. This observation
confirms our belief that VEKM techniques which combine both merits of map and
algebra cannot be surpassed by purely algebraic methods such as Tison method.

Example 3 (Example 1 revisited)
The function represented by the VEKM in Fig. 2 has the s-o-p formula

f = ADv ABCvBCE vBCDv ABCD v ABCE . )]
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Figure 10 illustrates our improved implementation of the typical step of Tison
method generating consensi with respect to the 4 biform variables A, B, C and E,
respectively. The starting expression for each step (as indicated below its matrix
implementation) is oblained as a rcarrangement of the result of the previous step. The
final outcome from the last step in Fig. 10(d) is exactly the same 9 PIs obtained
previously in each of Figs. 4 and 7(c).

o _ _ PP -~
BCE v BCD ECD BCD @
A

A AD ABC

(a) f=(ﬁCDv§CEFv(D v EC)A v(BC;"E_v BED)

(b) £=[CDv CE vAC)Ev(cEvED)av(AD)

A CE ¢D B
AD (9/)) CDE _ BcD
CE . - BCE
AC ACE ABC
B BCE BCD —_

Fig. 10. (Matrix implementation of Tison method (a,b).




258 Ali M. Rushdi and Hashim A. Al-Yahya

~ | DE AE BE BD | BE | 4B c
AD P . H
BD] BDE @ BDE) [__ | __|___ | BCp
C | coE ACE BCE | BCD| BCE ABC| __
(©) f=(BD)Cv(DEvAEvBEVEDvBEVABKY(AD)
A ke E
ADvBCDv ABC =
- B BDE
v BCD D — :
5 “ cD CDE
- AC ABC ACE
BC - BCE
E BCE

(@) f=(BDvCDvACYBC)Ev(BC)Ev(ADvECD v ABCvBCD)

Fig. 10. (Matrix implementation of Tison method.

Conclusion

Two original procedures of VEKM multiplication and tolding are introduced which
serve to extract all the prime implicants of a switching function and hence obtain its
complete sum. Dual versions of these procedures should extract all the prime implicates
of the function and use them to construct its complete product. Details of these dual
versions can be worked out if one follows the duality rules in [11]. All procedures are
efficient for manual use with medium-sized problems of up (o 12 variables or even more.
They combine the pictorial visualization of the map with the simplicity of straightforward

algebraic manipulations.
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Moreover, the use of a novel multiplication matrix or table is proposcd. The entries
of the matrix are shown to enjoy a very useful property, namely, thatif an entry is to be
ever absorbed by another, then it must be absorbable by an entry in the same row or in
the same column. Therefore, the number of term comparisons needed for implementing
absorptions can be dramatically decreased. The multiphcation matrix is used to

advantage with the new procedures as well as with the classical algebraic method of
Tison.

In contrast with VEKM multiplication which relies on map heuristics, VEKM
folding is algorithmic in nature. Moreover, the rules of VEKM f{olding are easily
simplified to utilize the existence of some common terms for the CS’s of the pertinent
subturctions. Such a simplification leads to an improved version of VEKM folding, which
inherently uses intelligent multiplication to reduce the number of term comparisons
needed. This version is truly promising as a basis for an efficient computer code for
extracting all the prime implicants and prime implicates of a CSSF.

Obtaining the complete sum/product can be an end in its own right as justified by
the numerous applications cited in the introduction. Alternatively, it may be only a part
of the minimization process. To complete the job in this latter case, a sequel to this work
appeats in a forthcoming paper [18] that uses VEKM or VEKM related methods to obtain
an exactly minimal sum/product starting with the complete sum/product.
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APPENDIX A
On the Variable-entered Karnaugh Map

Classically, the variable-entered Karnaugh map (VEKM) has been developed to
double the variable-handling capability of the conventional Karnaugh map (CKM). The
VEKM is also more useful in handling functions with complex intrinsic structure. For
cxample, given the 4-variable CSSF of Fig. 11, one may find its Pfs too many to be
visualized easily on the CKM [3, p.186]. However, either of the equivalent VEKM
representations in Fig. 12 can easily be used to extract all Pls of the given CSSF.

Moreover, the VEKM can be usedto represent Boolean functions of the form f:

m H-~=H

B - B , where B =1{01}, or equivalently of the form f: Bk — B, where

R =01}, j>1, is the Boolean carrier of 2’ clements. This is a direct consequence
of the fact that a Boolean function is completely defined by the 0, 1 assignments for cach

of its arguments and  not necessarily by all the 2/ possible assignments of an
argument [1].

The construction of a VEKM is based on the general Boole-Shannon expansion of
Boolcan functions |1,11], a statement of which in p-o-s form is given below. If f:

8" - B is a Boolean function of n variables, with B denoting a Boolean carricr such
as {0,1} or ({0,la,a), elc., then the function can be expanded about m of its

n variables, 0 < m < n, as follows. Let X pXe X denote respectively the m-tuple, the

(n-m)-tuple and the n-tuple

X‘(9 =X, X9u X b X1 (A.1)
X =Xt Xme2 e Xp 1y (A2)
X=[Xp,X,], (A.3)

then the Boolean function f(X) =f (XP,Xe) can be written in the form
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Xy
{ 1
1 1 1
1 1 1 1
X4
1 1 1
X3
1 1 1 1
X3

Fig. 11. A 4-variable CKM representing a CSSF with unusually numerous Pls.

X
[
(a)
Xi
I
XyvX2v X, XyvXyvXa
(b)

Fig. 12. Two VEKM representations of the CSSF in Fig. 11.
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f(Xl! X2seem Xm—l’Xm!Xc) = (Xl vXovavXpgvin VfO)"‘

(Xl VX2 VeV Xm—l VXm Vfl)/\

. A (;1 v)_(z VoV ;(n1_| v Xm Vf(szl) ) (A.4)
where
fo = £{0,0,..,0,0, X . ),
£ =£(0,0,,0,, X . ),
fgm_yy = (11,1, X, ). (A.5)

are called subfunctions, restrictions, residuals or ratios of the original function f(X).
Bach of them is obtained from f(X) through certain assignments or specifications
to its m expansion variables. Therefore, each subfunction is a l[unction of the
rcmaining (n-m) variables X, only, though, not necessarily a genuine function of all of

them. The expansion (A.4) can be used to represent ‘]'(X) in terms of a map of m
map variables, namely X, x,,., X, .Such amap is called a variable-entered Karnaugh
map (VEKM) since the entries of its 2™ cells are formulas representing the (generally)
variable subfunctions Jor Fyoes Tgm _y) - For a map cell in which the sequence
X1X5..X,,1X,, is of a value equal to the binary representation for the intcger /, the
entry of the cell is f;. When the expansion (A.4) is associated with a VEKM

representation the m expansion variables X , are called keystone or map variables while

r
the e=(m-n) remaining variables are called entered variables.

Without loss of generality, the variables x 1 X2 X, of the function f are assumed

to be arranged such that the first m among them are the map variables. Usually, we
choose these m variables as the most frequently used variables, i.e., as the variables that
appear most in a lypical algebraic expression of the function. For a given number m

) R . ) . .
where 0sms<n, there is ( m) possible choices for the sct of map variables.

Therefore, there are (1:1) types of expansions or VEKM representations for the

Boolcan function f(X). The total number of such VEKM representations is
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N= 3(n)-om (A6)
m=0

Note that a VEKM representation is unique only as far as the choice of its map and

entered variables is concerned, but there are usuaily many possible formulas for its

subfunctions. Out of the 2" VEKM representations, the 2 extreme ones arc not

genuine VEKMs. For m=0 and e=n, a VEKM degenerates into a purely algebraic
expression, while for m=n and ¢=0 a VEKM degenerates into a conventional or classical
Karnaugh map (CKM), i.e., to a map of constant rather than variable entries. Genuine
VEKMs serve as intermediaries between these two extreme cases of purc algebra and
pure mapping.

Ways of transformations among various VEKM representations are discussed in
[11]. If the number of map variables is to beincreased from m 0 my> m say,

then cachofthe 2 subfunctions of the original VEKM is expanded about thc new

(m2 —m]) map variables according to (A.4) to yield 2('”2_”ll subfunctions of its

_ m . .

own, with anumber of 2 2 subfunctions emerging for the new VEKM. On thc other
hand, if the number of map variables is to be decreased from my t0 my, then the
original VEKM is divided into 2 | disjoint partitions cach of which consists of

2{”]2—'"IJ of the original VEKM cells which have common valucs for the

(m?_ —m|)original map variables that are to be switched into entcred variables. These

partitions represent VEKM representations for the subfunctions of the new VEKM and
hence can be used to produce algebraic expressions for them.

If the entries of the VEKM representing a CSSF f are set in minimal p-o-s forms, then
an irredundant conjunctive form { is given by [11]

f=a{lp vCo(1)), (AT

r

where 7. is  an alterm that appears in al least one VEKM cell (i.c., itis a prime
implicate of the corresponding subfunction(s) of f), while Cn'( I, ) (which is called the

dual contribution of 1,) is to be set in minimal p-o-s form through its CKM
representation which is deduced from the original VEKM through the rules [11]:

1. Regard as a d-cell any cell containing
i. an alterm strictly subsumed by 1,, or

ii. two or more alterms whose consensus is subsumed by I, .
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2. Regard as a O-cell any cell containing 7. However, if such a cell is already
covered in each of the CKMs representing the dual contributions of alterms
whose consensus is subsumed by 1, , then regard this cell as a d-cell.

3. Regard the remaining cells as 1-cells (leave them blank)

Example 4 (a prelude to Example 1)
A 5S-variable CSSF is represented by the VEKM of Fig. 2 whose entries have been
alrcady set in minimal p-o-s forms. Five alterms appear in the cells of this VEKM |

namely 0, D, (D v E), . (Dv E). Note, in particular, that the 1 entry in cell ABC is

not an alterm. The minimal p-o-s dual contributions of these alterms are obtained from
the CKMs in Fig. 3(a)-(e). We cxplain the construction of these CKMs by discussing the

case ol Fig. 3 (c) in detail. Here, we have a CKM for Cu’( DVvE ) Cell ABC isa
O-cell since the alterm (DVE) appears  therein (Rule 2). Since the alterm

( DvE ) strictly subsumes the alterms D, FE |, 0, each of the 5 cells containing either one

of these latter alterms is a d-cell { Rule 1). The remaining 2 cells are 1-cells and are left
blank. We use standard CKM covering methods to produce a minimal p-o-s cover for

Cu’( Dwv E) in Fig. 3{c}, which consists of the single alterm loop B. According (o (A7),

a prime implicate (( DvE )v Cu'( DVE )): (l) vEv ;) should appear in (2). Other
prime implicates in (2) are produced similarly.

APPENDIX B
Tison Method for Obtaining CS ( F)

Tison nwcthod for obtaining all the prime implicants of a switching function f (i.c.,
obtaining CS( f ) ) is a systematic streamlined version of the iterative-consensus
technique. The original work of Tison appeared in [19], but a more readable exposition
can be found in [20] or in [3, pp. 103-105]. The method is sometimes called “Tison

method” for short, though its lengthier name serves to differentiate it from another Tison

method, namely, that for the derivation of all irredundant disjunctive forms [3, pp. 198-
211]. The essence of the present Tison method is summarized in Theorem 2.

Theorem 2:

Start  with a set of n(0) products So = {Tl(o),7‘2(0),---,7‘,1(0)(0)} with m biform

variables  X;.X,.--.X, and a switching function f thatis the disjunction of the
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products in Sy. Tor 1<i<m repeat the following 2-part step that replaces a set of

products 5;_; by another s, :

LFor 1sjgksn (i —1), if x; appears complemented in onc of the two products

i—] i—1
Tj(I ) and Tk(l ) and appears uncomplemented in the other such that they have no

other opposition, then they have a consensus with respect (o X; . Form that consensus
and add it to §;_;. Finally, §;_,is replaced by a superset §;_, of [{i-1)elements,
where l(i—l)z n(i - I).

(i-1) _ (i-1)

II. Consider every pair (7; Ty oo j= ki of  (so far remaining )

. i—1 -1 -1 . i
products in §5;_, . If Tj(l ) subsumes Tk(l ), then delete Tj(' ). Otherwise, if T.(' )
1)

i-1)

J

is subsumed by Tk(t_ then delete 7, . Whenever all subsumptions (and subscquent

. . ' i o
deletions) are exhausted, let the remaining set be s =11 ) ,TZ( ),-v-,T"(i)( )} .
The disjunction of products in any of the sets S;, 1 =i s m is an expression of f,

and the final set 5, consists of ali prime implicants of f.

Example 5 ( a prelude to Example 3)
The function represented by (9) is adisjunction of the 6 productsin the sct

So =(AD, ABC, BCE, BCD, A BCD, A BCE), (B.I)

which has 4 biform variables that we arbitrarily chose to order them as A, B, C and D.
Every term in S, is compared to its successors to form consensi with respect to the

biform variable A. Fifteen comparisons are necded to produce 4 such consensi as shown
by the solid lines in Fig. 13(a) which mimics the graphical representation of Muroga [3].
These consensi arc written in the bottom line in Fig. 13(a), and when added to the
original 6 products of forma new set 5 of 10 products. Now possible subsumptions

among every pair of remaining products are considered. The number of subsuming
products detected and deleted is 4. These are shown circled inFig. 13(a) wherein a
subsumption relation is indicated by a dotted line. The remaining (uncircled) products in

Fig. 13(a) constitute set s;. Similar work is needed to obtain sets §,, §; and S,
(by forming consensi with respect to B, C and D respectively and subsequently
deleting subsuming terms), The final set s, consists of all Pls of f.
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(a)

(a) Mur

Fig. 13

Actual comparisons, ( C} Reduced comparisons.

In Fig. 13(b) we show an equivalent representation for the first step in Tison
method (the onc used in producing consensi with respect to A). We use the lower
triangular part of a matrix whose keys are the 6 products in (B.1). Now it is clear that

6 |=15 comparisons are needed. To minimize the number of unnecessary
2

comparisons, we use a reduced matrix whose horizontal and vertical keys are the
products in (B.1) containing A and A respectively and from which other products (those

independent of A) are excluded. Now, we have a representation essentially equivalent to

our improved one in Fig. 10(a). However, in Fig. 10(a) we use simple muitiplication
rather than consensus generation.
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ABC
BCE
BCD
ABCD BCD BCD
ABCE BCDE BCE
AD ABC BCE BCD ABCD
(b)
(b) Actual comparisens
~ AD ABC
BCE + BCD
ABCD BCD BCD
ABCE BCDE BCE
()

(c) Reduced comparisons
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