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Abstract. In this paper, we present a conceptual model for autocatalytic teactions in which the autocatalyst
undergoes a mutation process in a continnous stirred tank reactor, Three cases with different mutation cocfficient
(o) have been considered. The analysis of these cases shows the importance of this parameter and the qualitative
and quantitative differences in the resulting bifurcation diagrams. Generully speaking, selectivity towards main
product increases with decreasing substrate conversion. Co-existence of a mushroom and an isola has been
determined for one of the cases. The isola portion is a low main product yield solution and is to be avoided.
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Notations
Cy substrate concentration
Cas feed substrate concentration
Ckg desired product concentration
Cy¢ desired product concentration in feed
Ce mutant concentration
Cer mutant concentration in feed
ki .k ratc constants
X substrate conversion
Y dimensionless desired product concentration
Y dimensionless desired product concentration in feed
Z dimensionless mutant concentration
Z dimensionless mutant concentration in feed
A% rcactor volume
E,F decomposition product concentrations
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Greeks

o mutation coefficient

B mutation efficiency

3] residence time in reactor

Introduction

Complex dynamic behavior (multiplicity, stability and chaos) of chemically reactive
systems has been a subject of rescarch in recent ycars [1-6]. Most of the previous work,
aiming at showing these exotic behaviors, was focused on non-iinearities induced by the
exponential dependence of the rate constant on temperature. The simplest reactor in the
chemical cngineering field is the Continuous Stirred Tank Reactor {CSTR) in which the
reactants are continuously fed and product withdrawn from it. Vigorous mixing in the
reactor provides the uniformity of its content,

Autocatalytic reactions taking place in an isothermal CSTR provide one of the
simplest systems for bifurcation studies. The autocatalyst provides the systemn with the
feedback necessary for multiplicity of steady states, sustained oscillations and possibly
chaos. The Gray and Scout two-reaction model (cubic autocatalysis, A+28-»3B and
catalyst decay, B—C) provided a basc {or @ number of studies that followed [6-11].

In this preliminary investigation, a model for an autocatalytic reaction is developed.
The autocatalyst is assumed lo undergo mutation to another competing form. ‘The model
was originally developed as an over-simplification of the formation of cancerous cells
from healthy, reproducing cells. This should by no means be taken as a "close"
description of the formation and reproduction of cancerous cells and their competition
with healthy cells. Tt is merely an attempt to explore the tip of the iceberg of the mutation
process. The bifurcation bchavior for a mutant-free feed will be discussed together with
cffect of substrate conversion on main product sclectivity.

The Model

The conceptual autocatalylic reaction with mutation which i1s assumed to take place
in an isothermal CSTR is depicted as follows:

A+2B_X_,3p : (B replication)
B_X2 ,g : (B dccay)
A+2B—2KI sociB (B mutation o C)
A+20—BX1 3¢ : (Creplication)

ks é : (C decay)
C F
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The mass balance equations are derived for the substrate (A), desired product (B)
and the mutant (C).

The substrate (A)

dC 4
V-d——q(CAf _CA) ch CB—VakchCB—VBkC C (l)
The desired product (B)
dCp 2 -
d[ —q(CBf —CB)+Vk CACB V(}..k|CACB -sz("B (2)
The mutant (C)
dc, )
V—&=a(Ccs ~Cc)+ VB CACE+2Vok CACE ~V=2C 3

B

Equations (1-3) can be transformed to Equations (4-6) respectively by defining the
following quantities:

_Car-Ca} ., + _Cp . _Cc . _ 2 ., -
X==o25 Y=gk Z=g-5 n=kCxe and 2=k
%’{-:-%+ (+0yy (- X)Y2 + By, (1- X)Z2 @
Y -Y)
Ql=£f——-+(l—oc)y;(l—X)Y2—yzY (5)
at 0
Zi -7
%:Lﬁe—lw.y, (1-X)Z?% + 200y, (1 - X) Y2 —%z (6)

Results and Discussion

it is clear that the model equations include 7 parameters, namely: vi, V2, Y, Zs, @,
B and 6. For mutant-free feed, Z;=0 and the values of the other paramelers arc fixed at
1i=450, 1»=11.25, B=1 and Y=0.067 respectively. The parameter o is varied to provide
the cases under investigation. The parameter 8 (space lime) is used as the main
bifurcation parameter. The bifurcation diagrams are constructed using the efficient
continuation software developed by Doedel and Kernevez [13]. To ensurc accuracy of
the simulation results, the bound on the allowable crror was maintained at 1072, with
automatic step size integration routines. In regions where multiplicity of steady states
occurs, the sel of initial conditions dictates the attractor to which the system tends to go.
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3.1 Case 1: (o=1.2)

Figure 1 shows the bifurcation diagramn with 0 being the bifurcation parameter for
o=1.2 (high mutation coefficient). The following observations can be drawn from the
Fig. 1. From 6=0 to 6=0.01060 there exists a unique stable branch. Due to low residence
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Fig. 1. Bilurcation diagram of X, Y and Z against © for case 1, 0=1.2 [
unstable static, B = Hopf bifurcation peint, « = stable periodic].
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time (0) values, the conversion of the substrate on this branch is low together with the
yields of both the main product (¥) and the mutant (7) (2). As the value of 8 is increased
from 0.01066 to 0.018566, three steady state branches co-exist in this region. Two of
these branches are stable fixed attractors whereas the third is unstable. The results of the
dynamic simulation at €=0.015 shown in Fig. 2a confirms the bistability (3). The region
extending from 6=0.018566 to 6=0.37513 (corresponding to a Hopf bifurcation point)
has & unique stable static attactor whereas the region from 6=0.37513 1o 8=0.42557
(corresponding to  homoclinic termination of the periodic atiractor emanating from
0=0.37513 as it collides with middle unstable saddle-node branch) is characterized by
the presence of a stable periodic attractor (see Fig. 2b for dynamic simulation, time tracc,
at 9=0.4) (4). As 8 isincreased from 0.42557 to 0.74108, tristability of steady states is
experienced, however only one attractor is stable. This attractor is a low substratc
conversion attractor (5). The last region (8>0.74108) has a unique, low conversion stablc
attractor,
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Fig. 2. Case 1: Dynamic simulations (a) 8 =0.015 showing bistability, (b)6=0.4 for periodic attractor.
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Figurc 3 shows the variation of ratio of main product yicld to mutant yield (¥/Z)
with substrate conversion. For extremely fow values of conversion, this ratio approaches
1400, however for conversions as low as 0.1, less main product is formed compared to
the mutant (i.e., Y/Z<1). The lowest selectivity (¥/Z=0.088) is obtained at the highcst
conversion (0.889). Some portions of this figure are unstable, however these portions can
be stabilized through proper contiol.
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Fig. 3. Case 1: Selectivity (¥/Z) against substrate conversion (X).

3.2 Case 2: (0=0.2)

Figure 4 shows the bifurcation diagram for X against 0 (the Y and Z bifurcation
diagrams are omitted for brevity). Figure 4 is obtained for a=0.2 (which indicates lower
mutation coefficient compared to case 1). Generally speaking, many of the main features
of this bifurcation diagram are quite similar to the first case (ie., it is mainly a
mushroom-type bifurcation). However, in this case three Hopf bifurcation points (HBP)
are present comparcd 1o only one HBP for the first case. As the bifurcation parameter is
increased, the system goes through single static attractor, to tristability of static attractors
(2 are stable), back to unique static attractor followed by a one stable periodic attractor
and finally one stable fixed attractor.
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Fig. 4. Bifurcation diagram of X against 0 for case 2, 0=0.2 [
B = Hopf bifarcation point].

= stable static, ----- = unstahle static,

The variation of the sclectivity (Y/Z) with substrate conversion (X) is shown in
Fig. 5. At very low values of conversion, the selectivity approaches 8000. Compared to
the previous case, the yield of the main product is higher than the mutant yield (Y/Z>1)
at high conversions (X about 0.245). The highest conversion (0.887) which occurs at
6=0,0887 results in the lowest selectivity (Y/Z=0.0807).
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Fig. 5. Case 2: Selectivity {¥/Z)} against snbstrate conversion (X).
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3.3 Case 3: (0=0.1)

The bifurcation diagram of substrate conversion (X) against residence time (6) is
shown in TFig. 6. The figure reveals that, there is a sub-region (0.01154<6<0.6846) in
which a bistability between a mushroom and an isola occurs. Therefore, the discussion
below is for both the isola and the mushroom.

1.0

08 1.0

Fig. 6. Bifurcation diagram of X against O for case 3, o= 0.1 showing coexisting mushroom (thick lines)
and isola (thin lines).

As the value of the bilurcation parameter (8) is incrcased from 0=0 to 6=0.01139
(corresponding to a limit point on the mushroom) a unique stable static attracter exists
and all initial conditions tends to go to the mushroom.. Between 6=0.01139 and
6=0.0115 {corresponding 10 a limit point on the isola), three steady states static branches
(two stable branches and a middle unstable branch) exist on the mushroom. Between
0=0.0115 and 6=0.01355 (corresponding to a limit point on the mushroem), five steady
state branches cxist (3 branches on the mushroom and 2 on the isola). Two of the
mushroom branches are stable fixed attractor while one stable fixed branch is located on
the isola. Increasing © further to 6=0.01916 (corresponding o a limit point on the 1sola),
three stcady state branches exist (one stable branch on the mushroom and two branches -
one of the two branches is stable- on the isola). The system then alternates between 5 and
3 co-existing steady states branches (some of thesc branches are periodic attractors) until
the vanishing of the isola at ©6=0.68466. Finally a unique stable fixed attractor on the
mushroom prevails for 8>0.6939,



Mudeling, Simulation and Bifurcation Analysis ... 81

Figure 7 shows the variation of ratio of main product yield to mutant yield (¥/Z)
with substrate conversion for both the mushroom and isola. Unlike the previous cases,
the lowest value of selectivity (¥/Z) that can be obtained when operating on the
mushroom is 3.55. This lowest yield occurs at a conversion of 0.861 at a residence time
of 0.0896. On the other hand, the highest selectivity obtained on the isola is 1.266 and it
occurs at a substrale conversion of 0.803. Therefore, it is quite cvident from the
aforementioned discussion that if the system is operated 10 obtain higher main product
selectivity, operation on the mushroom is more desirable and operation on the isola is to
be avoided.
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Fig. 7. Casc 3: Selectivity (Y/Z) against substrate conversion (X).
Conclusion

A simplified model for autocatalytic reactions taking place in a CSTR has been
developed. The autocatalysl is assumed to undergo mutation, with the mutant competing
with the original autocatalyst for the limiting substrate necessary for their replication.
Both autocatalysts undergo a decay process. The bifurcation diagrams are constructed
and analyzed for three representative values of . Generally speaking, the selectivity of
the main product for the three cases increases with the decrease substrate conversion.
One case gave an isola and a mushroom type solution; the isola portion gives low main
product vield.
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