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Abstract. In this paper, we present a conceptual model for autocatalytic reactions in which the autocatalyst 
undcrgocs a mutation process in a continuous stirred tank reactor. Three cases with different mutation coefficient 
(n) have been considered. The analysis of these cases shows the importance of this parameter and the qualitative 
and quantitative differences in the resulting bifurcation diagrams. Gcncrully speaking, selectivity towards main 
product increases with decreasing substrate conversion. Co~xistcnce of a mushroom and an jsola has hct.'I1 
dClcflIuneu for one of the cases. The isola portion is a low main product yield solution and is to be avoideu. 
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Introduction 

Complex dynamic behavior (multiplicity, stability and chaos) of chemically reactive 
~ystems has heen a subject of research in recent years [1-61. Most of the previous work, 
aiming at showing these exotic hehaviors, was focused on non-linearities induced hy the 
exponential dependence of the rate constant on temperature. The simplest reactor in the 
chemical engineering field is the Continuous Stirred Tank Reactor (CSTR) in which the 
reactants are continuously fed and product withdrawn from it. Vigorous mixing in the 
reactor provides the uniformity of its content. 

Autocatalytic reactions taking place in an isothermal CSTR provide one of the 
simplest systems for bifurcation studies. The autocatalyst provides the system with the 
feedback necessary for multiplicity of steady states, sustained oscillations and possibly 
chaos. The Gray and Scott two-reaction model (cubic autocatalysis, A+2B-f3B and 
catalyst decay, R-fC) provided a base for a numher of studies that followed [6-111. 

Tn this preliminary investigation, a model for an autocatalytic reaction is developed. 
The autocatalyst is assumed to undergo mutation to another competing form. The model 
was originally developed as an over-simplification of the formation of cancerous cells 
from healthy, reproducing cells. This should by no means be taken as a "close" 
description of the formation and reproduction of cancerous cells and their competition 
with healthy cells. It is merely an attempt to explore the tip of the iceherg of the mutation 
process. The bifurcation behavior for a mutant-free feed will be discussed together with 
clTcct of suhstrate conversion on main product selectivity. 

The Model 

The conceptual autocatalytic reaction with mutation which is assumed to take place 
in an isothermal CSTR is depicted as follows: 

A + 2B _a",.k;:.!J~) 2C + B 

A+2C J3.k J )3C 

kzj 
C~F 

(B replication) 

(B decay) 

(B mutation to C) 

(C replication) 

(C decay) 
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The mass balance equations are derived for the substrate (A), desired product (B) 
and the mutant (C). 

The substrate (A) 

dC A 2 2 2 
VTt=q(C Af -CA)-VkICACB -Va.k1CACB -V~.kICACc (I) 

The desired product (B) 

dCB 2 2, 
V dt = q(CBf -CB)+ VklC A C B - Va.kIC A C B - Vk 2CB (2) 

The mutant (Cl 

(3) 

Equations (1-3) can be transformed to Equations (4-6) respectively hy defining the 
following quantities: 

dX X 2(:1 2 dt = -8" + (I + a)YI (1- X)Y + tJ'YI (1- X)Z (4) 

dY (Yf - Y) 2 
-= +(I-a)YI(I-X)Y -Y2Y 
dt e (5) 

(6) 

Results and Discussion 

It is clear that the model equations include 7 parameters, namely: YJ, Y2 , Yf , Zr , a, 
~ and e. For mutant-free feed, Zr =0 and the values of the other parameters are fixed at 
YI=450, Y2= 11.25 , ~= I and Yf=O.067 respectively. The parameter a is varied to provide 
the cases under investigation. The parameter e (space time) is used as the main 
bifurcation parameter. The bifurcation diagrams are constructed using the efficient 
continuation software developed by Doedel and Kernevez [131. To ensure accuracy of 
the simulation results, the hound on the allowable error was maintained at 10,12, with 
automatic step size integration routines. In regions where multiplicity of steady states 
occurs, the set of initial conditions dictates the attractor to whieh the system tends to go. 
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3.1 Case 1: (a=1.2) 
Figure 1 shows the bifurcation diagram with 9 being the hifurcation parameter for 

a= 1.2 (high mutation coefficient). The following ohservations can be drawn from the 
Fig. I. From 9=0 to 9=0.01066 there exists a unique stable branch. Due to low residence 
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Fig. 1. Bifurcation diagram of X, Y and Z against e for case 1, a=1.2 [ --= stable static, ----- = 
unstable static, • = Hopf bifurcation pOint,. = stable periodic]. 
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time (8) values, the conversion of the substrate on this branch is low together with the 
yields of both the main product (Y) and the mutant (2) (2). As the value of 8 is increased 
ii'om 0.01066 to 0.018566, three steady state branches co-exist in this region. Two of 
these branches arc stable fixed attractors whereas the third is unstable. The results of the 
dynamic simulation at 8=0.015 shown in Fig. 2a confirms the bistability (3). The region 
extending irom 6=0.018566 to 6=0.37513 (corresponding to a Hopfbifurcation point) 
has a uniyue stable static attactor whereas the region from 6=0.37513 to 8=0.42557 
(corresponding to homoclinic termination of the periodic attractor emanating trom 
6=0.37513 as it collides with middle unstable saddle-node branch) is characterized by 
the presence of a stable periodic attractor (see Fig. 2b for dynamic simulation, time trace, 
at 6=0.4) (4). As 6 is increased from 0.42557 to 0.74108, tristability of steady states is 
experienced, however only one aUractor is stable. This attractor is a low substrate 
conversion altractor (5). The last region (6)0.741 OR) has a unique, low conversion stable 
attractor. 
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Fig. 2. Case 1: Dynamic simulations (a) 9 ;(l.OIS showing bistability, (b)9;(l.4 for periodic attractor. 
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Figure 3 shows the variation of ratio of main product yield to mutant yield (YIZ) 
with suhstrate conversion. For extremely low values of conversion, this ratio approaches 
1400, however for conversions as low as 0.1, less main product is formed compared to 
the mutant (i.e., Y/Z<l). The lowest selectivity (YIZ=0.088) is obtained at the highest 
conversion (0.889). Some portions of this figure are unstable, however these portions can 
he stabilized through proper control. 
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Fig. 3. Case I: Selectivity (Y/Z) against substrate conversion (X). 

3.2 Case 2: (a=O.2) 
Figure 4 shows the bifurcation diagram for X against e (the Y and Z bifurcation 

diagrams are omitted for brevity). Figure 4 is obtained for a=0.2 (which indicates lower 
mutation coefficient compared to case I). Generally speaking, many of the main features 
of this hifurcation diagram are quite similar to the first case (i.e., it is mainly a 
mushroom-type bifurcation). However, in this case three Hopf hifurcation points (HBP) 
are present compared to only ohe HBP for the first case. As the bifurcation parameter is 
increased, the system goes through single static attractor. to tristability of static altractors 
(2 are stable), back to unique static attractor followed by a one stable periodic attractor 
and finally one stable fixed altractor. 



Modeling, Simulation and Bifurcation Analysis . ... 79 

1.0 

08 -
( 

0.6 

>< 

0.4 

0.2 

0.0 , 
0.0 0.2 0.4 0.6 0.8 10 

8 

Fig. 4. Bifurcation diagram uf X against a for case 2, ex--o.2 [--:;;; stable static, -~~-- :;;; unstahle static, 
• = Hopf bifurcation pointJ. 

The variation of the selectivity (Y/Z) with substrate conversion (X) is shown in 
Fig. 5. At very low values of conversion, the selectivity approaches 8000. Compared to 
the previous case, the yield of the main product is higher than the mutant yield (Y /Z> 1) 
at high conversions (X about 0.245). The highest conversion (OJI87) which occurs at 
6=0.0887 results in the lowest selectivity (YIZ=O.0807). 
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}i'ig. 5. Case 2: Selectivity (VIZ) against substrate conversion (X). 



80 K.1. Alhumaizi and A.E. Abasaeed 

3.3 Case 3: (a=O.l) 
The bifurcation diagram of substrate conversion (X) against residence time (8) is 

shown in Pig. 6. The figure reveals that, there is a suh-region (0.01 I 54:s8:s0.6846) in 
which a bistability between a mushroom and an isola occurs. Therefore, the discussion 
below is for both the isola and the mushroom. 
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Fi~. 6. Bifurcation diagram of X against e for case 3, a = 0.1 showing coexisting mushroom (thick Iilles) 
and isola (thin lines). 

As the value of the bifurcation parameter (6) is increased from 8=0 to 6=0'<)1139 
(corresponding to a limit point on the mushroom) a unique stable static atlractor exists 
and all initial conditions tends to go to the mushroom .. Between 8=0.01139 and 
8=0.0115 (corresponding to a limit point on the isola), three steady states static branches 
(two stahle branches and a middle unstahle branch) exist on the mushroom. Between 
6=0.0115 and 6=0.01355 (corresponding to a limit point on the mushroom), five steady 
state branches exist (3 branches on the mushroom and 2 on the isola). Two of the 
mushroom branches are stable fixed attractor while one stable fixed branch is located on 
the isola. Increasing 6 further to 6=0.01916 (corresponding to a limit point on the isola), 
Ihree steady state branches exist (one stable branch on the mushroom and two hranches -
one of the two branches is stable- on the isola). The system then alternates hetween 5 and 
3 co-existing steady states branches (some of these branches are periodic attractors) until 
the vanishing of the isola at 6=0.68466. Finally a unique stable fixed attractor on the 
mushroom prevails for 8>0.6939. 
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Figure 7 shows the variation of ratio of main product yield to mutant yield (Y/Z) 
with substrate conversion for both the mushroom and isola. Unlike the previous cases, 
the lowest value of selectivity (Y/Z) that can be obtained when operating on the 
mushroom is 3.55. This lowest yield occurs at a conversion of 0.861 at a residence time 
of 0.0896. On the other hand, the highest selectivity ohtained on the isola is 1.266 and it 
occurs at a substrate conversion of 0.803. Therefore, it is yuitc evident from the 
aforementioned discussion that if the system is operated to obtain higher main product 
selectivity, operation on the mushroom is more desirable and operation on the isola is to 
be avoided. 
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Fig. 7. Case 3: Selectivity (Y/Z) against substrate conversion (Xl. 

Conclusion 

A simplified model for autocatalytic reactions taking place in a CSTR has been 
developed. The autocatalyst is assumed to undergo mutation, with the mutant competing 
with the original autocatalyst for the limiting suhstrate necessary for their replication. 
Both autocatalysts undergo a decay process. The bifurcation diagrams are constructed 
and analyzed for three representative values of 0:. Generally speaking, the selectivity of 
the main product for the three cases increases with the decrease substrate conversion. 
One case g<lve an isola and a mushroom type solution; the isola portion gives low main 
product yield. 
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