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Abstract. Analytical solutions of the dynamic response of the classical, first-order and third-order theories of 
cross-ply laminated shallow shells are developed for various boundary conditions. The solutions are applicable to 
laminated shells with two opposite edges simply supported and the remaining ones can have arbitrary 
combinations of free, clamped and simply supported boundary conditions. A Levy type method in conjunction 
with generalized modal approach is used to obtain these solutions. For thick shells, the classical shell theory 
predicts deflections and stresses significantly different from those of the third-order theory. The third-order theory 
and first-order theory results are very close to each other for response and nonnal stress. However, the third-order 
theory does not require the use of shear correction factors. 

Introduction 

The analysis of laminated composite shells has been the subject of significant research 
interest in recent years. The classical lamination shell theories based on the Love-Kirchhoff 
assumptions are adequate to predict the gross behavior of thin laminates. A survey of 
different classical lamination theories can be found in [1-2]. When the structures are rather 
thick or when they exhibit high anisotropy ratios, the transverse shear deformation effect 
has to be incorporated. In such cases more refined theories are needed. Numerous first
order and higher-order shear defonnation theories of laminated composite shells are 
presented in the literature [3·11]. The third-order theory used in the present study is 
proposed by Reddy and Liu [5], in which the surface displacements are expaoded up to the 
cubic tenn in thickness coordinate while the transverse deflection is assumed to be constant 
through the thickness. The nine undetermined functions are reduced to five by imposing 
stress-free boundary conditions on the transverse shear stress on the bounding surfaces of 
the shell. Since the theory accounts for parabolic distribution of the transverse shear 
stresses, no shear correction coefficients are required. 
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Closed-form solutions for the dynamic response of laminated plates and shells have 
been developed mainly for the case of simply supported boundary condition [12-19]. 
Analytical solutions for the dynamic response of composite lamil)ates for a variety of 
boundary conditions are developed in [20-24], where in [24], a brief note is introduced 
about shallow shells. Ritz, Galerkin and other approximate methods are used for general 
boundary conditions and lamination schemes. 

In the present work, a generalized modal approach in conjunction with Levy method is 
presented to solve for the transient response of cross-ply laminated shallow shells with 
various boundary conditions and for arbitrary loadings. The equations of motions of the 
classical, ftrst-order and third-order theories are converted into a single-order system of 
equation by using state variables. The biorihogonality conditions of principal modes of the 
original and adjoint eigenfunctions are used to decouple the state space equation. To 
demonstrate the method, numerical results of the three theories for center deflections and 
stresses of spherical shells subjected to sinusoidal loading in spatial domain and sine pulse 
loading in time domain are presented. 

Equations of Motion 

The higher-order shear deformation theory (HSDT) used in the present study is based 
on the following displacement field (see Reddy and Liu [5] ): 

W=W (1) 

where 1! .. v, ware the displacements along the orthogonal curvilinear coordinates such 

that the ~I and ~2 -curves are lines of principal curvature on the midsurface S = 0, and 

S -curves are straight lines perpendicular to the surface S = 0, (u,v,w) are the 

displacements of a point on the middle surface, and <1>1 and (1)2 are the rotations at S = 0 

of normals to the mid surface with respect to the ~2 and ~I -axes, respectively. The 

parameters RJ and R, denote the values of the principal radii of curvature of the 
middle surface (see Fig. I), and (Xl and (X2 are the surface metrics. All displacement 

components (u, v, w, <1>1' <1>2) are functions of (~l' ~2) and time t. 
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Fig. 1. Geometry and coordinate system of a double curved sheD panel. 

Substituting Eq. (1) into the linear strain-displacement relations of a shell referred to 
an orthogonal curvilinear coordinate system, we obtain 

where 

o_au+w EI - -- --, aX1 RI 

o_av+w E2 - -- --, aX2 R2 

EI = E? + I; (](? + yl;2 ](f) 

E2 = Eg+I;(](g+yI;2](~) 

E4 = E~+yI;2](~ 
o ,2 1 

E5 = E5+Y~ ](5 

E6 = ril+I;(](g+yI;2](~), (2) 

(3) 

Here Xi denote the cartesian coordinates (dXi;; (Xi dSj , i;; 1,2), and n1 ;; 4/h2 and n2;; 

n,/3. 
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The stress-strain relations for the kth lamina are given by 

at Q l1 Q12 Qt6 0 0 £1 1 

a2 Q 22 Q26 0 0 £2 

a6 Q66 0 0 £6 

a4 symm. ~ 0 £4 

as (kl Q ss (kl 
£5 (4) 

Where CY] '02 are normal components; and (J6' 0"4.a5 are shear stress components (see 

Fig.2); and Qit) are the material constants of the kth lamina in the laminate coordinate 
system. 

/ 
,;, 

Fig. 2. Stress components in sheD coordinates. 

Using Hamilton's principle, the equations of motion appropriate for the displacement 
field (I) and the constitutive equations (4) are derived in [5] as: 

aN, aN6 - .. - .. -aw 
-a-+-a- = h U+h4tl- Y13 -a 

XI X2 Xl 

dN6 + dN2 = iJ'v+i;'ij) -rh' dW 
aX] dX2 2· dX2 

dQ] + (lQ2 -Ynl (-~ .. fu+ dK1) +')'n2 (a2
pl + a1

pz + 2 a2
p6 ) _~_ Nz +q :;::; 

aX! dX2 aX] dX2 ax? ax~ dX]dX2 RJ Rz 

- ali -~ - (Iv - d$2 2 a2w riw 
IIW+Y[ba-+ Is a +13'a-+Is'a--n217(-a 2 +-a 2 II 

XI Xl X2 X2 Xl X2 

aMl dM6 ap1 dP6 -,. - .. -i)w 
-a-+-a--Q1+YnIKI-Yn2(-a +-a ) = h U+ I4$I-YIs-a Xl X2 Xl x2 Xl 

aM6 aM2 Q (ap6 ap21 -, .. -," -,a.;; 
~+ dX2 z+YmKl-Yn2 ~+-a;;- = b V+I4 $2- YIS ~ 

(5) 
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where superposed dot denotes differentiation with respect to time, q is the distributed 
transverse load which is the only external load considered in the analysis, and N i , M i , ... 

are the stress resultants: 

_ N 'k (k) 3 
(Ni,Mi,Pi) - L I O"i (1,1;,1; )dl; (i=I,2,6) 

k=I'k.1 

N 'k 
(QI,KI) = L I 0"~k)(l,~2)d~ 

k = lI;k.1 

N 'k 
(Q2,K2) = L I 0"~k)(l,1;2)d~. 

k=l,k_1 (6) 

The inertias are defined by the equations, 

- n2 
13 = n214+-15, 

RI 

1; = 13- 2 Yn215 + Yn~17 ' 

Is = n215-n~I7 , 

N 'k (k) 2 3 4 6 
01,12,13,14,15,17) = rip (l,~,~,~,I;,1; )d~ , 

k=I'k_1 

(7) 

Where p(k) is the mass density of the lamina per unit volume and I; are the sarne as Ii 
except that RI is replaced by R, . The resultants are related to the total strains by 

for ij = 1,2,6 

Ni = AijEY+BijKY+YEijKJ 

Mi = Bij Ey + Dij Ky + YFij KT 

Pi = EijEY + Fij Ky + Hij KJ (8) 
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Substitution of Eqs. (13) and (14) into the equations of motion of the Wee theories 
results in the following systems of equations 

HSDT 

FSDT 

CST 

Urn" = CI Urn +C2 Vrn' +C3 W m ' +C4 Wm '" +CS<lllm +C6<1>Zm' 

+bt Urn + b2 Wm' +b34»lm 

Vrn" = qUm'+CSVm+C9Wm+CIOWm"+CIl<1l1m'+CJzcll2m 

+b4 Vrn +bs Wm + b6¢t2m 

Wm "tt = Ci3 Urn' +Ci4 Vrn + CiS Wm + ct6 W m " +C17 clli m '+ CIS 4l2m 

+b7 Urn' +bg Vm + h9 Wm + bIO Wm" +bll4>lm '+ blZ4>Zm + aOfm 

<!lIm II = Ct9 Urn +C20 Vrn' +C21 W m ' +C22 Wm "'+ C23<1l1m + C24<1l2rn , 

+ hl3 Urn + b14 Wm '+ hiS ~lm 

cJlzm II = C25 Urn '+C26 Vm +C27 Wm +C28 Wm "+C29411m '+C30<llZm 

+b16 Ym + b17 Wm +blS4>Zm 

Urn ,. = CJ Urn + C2 Vrn' + C3 W m ' +C4CPlm + C5 «llzm' + bI Urn + bz 4>'m 
V m " = C6 Urn '+C7 Vrn +C8 Wm + C94»lm I +CIO cJ»Zm + h3 Yrn + b4 cPzm 

Wm " = CII Urn '+C12 Vrn + C13 Wm + C14 Wl m ' + CIS <l>2m + hs Wm + aof m 

cIllm It = C16 Urn +C17 Vm '+ CIS Wm '+ Cl9 <l>lm +C20<llZm '+ h6 Urn + b7 4>lm 

(15) 

412m " = e21 Urn' +C22 Vm + C23 Wm + C24 fPlm' + C2SfP2rn + h8 "rn + h9 $2rn (16) 

Urn" = Cl Urn +Cl Vm '+C3Wm '+C4 Wrn "'+bl Urn +blWrn' 

Vrn" = C5Um'+C6Vm+q W m+CSWrn"+b3Vm +b4 Wm 

W m"" = C9Um'+QOVm+C11Wm+CIZWm"+bsUm'+b6Vm 

+ b7\Vm + bs Wm" + aofm (17) 

where a prime and dot on a quantity denote the derivative with respect to Xl and 
time t, respectively. The coefficients in Eqs. (15), (16) and (17) are presented in 
Appendix k 

In order to reduce the system of Eqs. (15), (16) and (17) to a state form, the 
components of the state vector ( y(x"t) } associated with each theory are defined as 
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HSDT 

Yl m =Wm 'Y2m = Wm"Y3m=Wm"'Y4m=Um'YSm=Vm'Y6m=<I>lm, 

Y7m = <l>2m' YSm =Wm"', Y9m = Urn', YIOrn=Vm'. Yl1m= <l>lrn', Y12rn = <l>2m' 
(18) 

FSDT 

CST 

Yl rn = W rn 'Y2rn = U rn 'Y3rn = V rn 'Y4rn = <l>lrn'YSrn = <l>2rn 

Y6rn = Wrn "Y7rn = Urn"YSrn = Vrn "Y9rn = <l>lrn"YlOrn = <l>2rn' (19) 

Yl m = W m 'Y2m = W m "Y3m = W rn "'Y4m = Urn 

YSrn = V rn 'Y6rn = W m""Y7rn = Um"YSrn = Vrn' (20) 

Using (18), (19) and (20), the system of equations (15), (16) and (17) may be expressed in 
the form 

(y') = [M]{)i)+[K]{y)+{r) (21) 

where the matrices [M] and [K] are defined in Appendix B for HSDT, FSDT and CST as 
(l2xI2), (lOxlO) and (8x8) matrices, respectively, The elements of the load vector (r) are 

( r) T = (0,0,0,0,0,0,0, ao f rn' 0,0,0,0) for HSDT (22) 

T (r) = (0,0,0,0,0, ao f rn' 0,0,0,0) for FSDT (23) 

( r ) T = (0,0,0,0,0, ao f rn , 0 ,0) for CST (24) 

Free Vibration Problem 

In the case of free vibration problem, the vector ( Y ) will be separated into time and 
spatial coordinates as : 

(25) 

To obtain the frequencies and the corresponding eigenfunctions, the generalized coordinates 
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T m(t) must satisfy 

(26) 

and the eigenfunctions { Y m ) will fulfil the following equation 

{Y')=[A]{Y) (27) 

where 

[A] = [K ]-ro~[M (28) 

00m IS the natural frequency corresponding to the mth mode. There are infinite frequencies 

for each value of m and the dynamic response is governed mainly by the fundamental 
frequency of each mode. 

The solution to Eq. (27) is given by: 

(29) 

where 

{I) = [D]I{k) (30) 

and 

o 

(31) 

o 

where n = 12 for HSDT, n = 10 for FSDT and n = 8 for CST, and Ai are the distinct 

eigen values of the matrix [A] while [D] denotes the matrix of eigen vectors of [A]. 
Substitution of (29) into the boundary conditions associated with the edges 
Xl = ± a / 2 results in a set of homogeneous algebraic equations of the form 

[B][D]I{k) = {OJ (32) 

For nontrivial solution ofEq. (32), the detenninant should be zero 
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IBlflDI = 0 (33) 

Equations (33) and (29) give the eigen frequencies and the associated eigen functions, 
respectively. The boundary conditions for simply supported (S), clamped (C) and free (F) at 

the edges XI = ± a f2 for the three theories are: 

HSDT 
S:v = w = $, = NI = MI = PI = 0 

C:u = v = w = <1>1 = <1>, = Ow = 0 aXi 
ap, ap, 

F:NI = MI = PI = N, = M6-n,P, = QI-nIK,+n2(-a +-a-) = 0 (34) 
Xl X2 

FSDT 

CST 

S : v = w = 'h = NI = MI = 0 

C:u = v = w = <1>1 = <1>2 = 0 

F:NI = MI = QI = N6 = M6 = 0 

S:v = w = NI = MI = 0 

C:u = v = w = aw = 0 a XI 

I aMI aM6 
F:NI = MI = N6+-M6 = -a-+2-,- = 0 

R2 XI 0 X2 

Adjoint Problem 

(35) 

(36) 

Equation (21) is not a self-adjoint equation and the eigenfunctions do not form an 
orthogonal set, therefore, we must obtain the eigenfunction of the adjoint ofEq. (27) in 
order to decouple Eq. (21). Nayfeh in his book [25] showed that the adjoint ofEq. (27) is: 

with the following associated boundary conditions 

al2 
{ZJT{YJ I = 0 

-al2 

(37) 

(38) 

According to Eq. (38), the following boundary conditions will be defined at the edges 
xl=±af2: 
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HSDT 

S:Z2 = Z4 = 4, = Zg = ZIO = Zt2 = 0 

C:Z3 = Zs = Z9 = ZIO = ZII = ZI2 = 0 

F:dtZt+d4Z3+d7ZS+Z7 = 0 

d2 Zt +ds Z3 +dg Zs+ Z9 = 0 

d3 Zt + d6 Z3 + d9 Zs + ZII = 0 

dIOZ2+dI3Z4+dt64,+Zg = 0 

dIlZ2+dt4Z4+dl74,+ZIO = 0 

dI2Z2+dtsZ4+dtg4,+ZI2 = 0 (39) 

FSDT 

S:Z2 = Z4 = 4, = Zg = ZIO = 0 

c: 4, = Z7 = Zg = Z9 = ZIO = 0 

F:dtZ7+d4Z9+Zt = 0 

d2Z7+dsZ9+Z3 = 0 

d3Z7+d6Z9+Zs = 0 

Z2-~Zs = 0 

Z4-4,-~ZIO = 0 (40) 

CST 

S : Z2 = Z4 = 4, = Zg = 0 

C: Z3 = 4, = Z7 = Zs = 0 

F:dtZt+d3Z3+ZS = 0 

d2Zt+d4Z3+Z7 = 0 

dSZ2+d7Z4+Z6 = 0 

d6Z2+dgZ4+Z8 = 0 (41) 

The constants (d i) in equations (39), (40) and (41) are presented in Appendix C. 

A formal solution of equation (37) is given by 

(42) 
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o 

W xIll= (43) 

Q 

where [C] denotes the matrix of eigenvectors of -[AlT 

Substitution of Eq. (42) into the corresponding boundary conditions defined in Eqs. 
(39-41) for the three theories at the edges Xl = ± a / 2 results a homogeneous algebraic 

equations of the form 

[E]{n}=O (44) 

we have to solve for the eigenvector {n} corresponding to each frequency (i). 

Dynanaic Response 

Making use of the following biorthogonality conditions of the natural modes with 
respect to the eigenfunctions {Y m} aod {z,}, 

al2 T 
- j {Zn} [M]{ Y m} dXl = Mm omn 

-al2 

al2 T 
j {Zn} ({ Y m'} - [K]{ Y m } ) dXl = ~ Mm omn 

·al2 

(45) 

(46) 

and substituting Eq. (25) in Eq. (21) and left multiplication by the adjoint eigenfunction 
{z,} T and integrate over the domain, we obtain 

.. 2 I al2 T 
Tm(t)+romTm(t) = - j {Zm} {rm}dXl 

Mm -al2 

For zero initial conditions, the state vector {y} will be expressed as 

(47) 

I t al2 T 
(Ym( Xl, t)} = -( Y m( XI) }jhm(t - t) j {Zm} (rm(~,t) }d~dt (48) 

Mm 0 -al2 

where hm ( t - 't ) is the impulse response function. To obtain the generalized displacements, 

we use Eqs. (18), (19), (20) aod (48) in conjunction with Eq. (13). 
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Numerical Results and Discussion 

The numerical applications are carried out for cross-ply spherical shallow shells 
whose geometrical and material properties are the same for all layers. The following 
material properties of a lamina in its principal coordinates are used: 

E, = Ix]Q' psi, EI = 25E" G12 = G13 = O.5E" G23 = 0.2E" v I2 = 0.25 

The transverse deflection presented in the figures IS evaluated at 
( XI ' X2 ' t; ) = ( 0, b 12 , t; ) . The stresses are nondimensionalized as follows: 

In all calculations, unless otherwise stated, the following parameters are used (see Fig. I) 

a = b = 20 in, h = 2 in, RI = R, = 5a, 

qo = 500 psi, tl = 0.003 sec, p = 0.OOOI2Ib-s'lin4 

In all cases sinusoidal distribution of loading in spatial domain and sine pulse in time 
domain is used, q( XI, X2, t) = qo cos (1t XII a) sin( 1t X21 b) F(t), where 

F(t) = { 
sin( 1tt ) 

tl 

o 

Zero initial conditions are assumed and for the first-order theory (FSDT), the shear 
correction coefficients are taken to be K..o' = K,,' = 5/6. For the explanation of S, C, and F 
in the figures, for example, SSFC means: the shell is simply supported (SS) at x, = 0 and x, 
= b, free (F) at XI = a/2 and clamped (C) at XI = - a/2. 

The effect of shallowness of the shell on the center deflection of antisymmetric and 
symmetric cross-ply spherical caps are displaced in Fig. 4 and Fig. 5 respectively for 
various boundary conditions. All the results are obtained using the third-order theory. It is 
clear that the plate is relatively flexible when compared to the shell. 
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Fig. 4. Effect of shallowness of the sheD on the center deflection of aotfsynunetric cross-ply spherical caps 
for various boundary conditions (a) SSSS, SSCS and SSCC. (b) SSFF. SSFS aod SSFC. 
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Fig. 5. Effect of shallowness of the shell on the center denection of symmetric cross-ply spherical caps 
for various boundary conditions <a> SSSS, SSCS and SSCC. (b) SSFF, SSFS and SSFC. 
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Fit . 6. Normal. stress (0"2) of two-layered spherical shells for various boundary conditions (a) SSSS, 

SSCS ancI SSCC. (b) SSFF, SSFS ancI SSFC. 
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Fig. 7. Transverse shear stress (a 4 ) of three-layered spherical shells for various boundary conditiom (a) 

SSSS, SSCS and SSCC. (b) SSFF, SSFS and SSFC. 
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The variation of the nonna! stress 0'2 and the transverse shear stress a 4 with time are 

presented in Fig. 6 and Fig. 7 respectively. The nonnal stress cr2 obtained using the third

order and first -order theories are close and differ from the classical theory for all boundary 
conditions. Unlike the nonnal stress, the transverse shear stress 04 predicted by the first

order theory differs significantly from that predicted by the third-order theory for all 
boundary conditions. 

Conclusions 

A generalized modal analysis approach is presented for forced vibration analysis of .. 
cross-ply laminated shallow shells. The equations of motion of the classical. first- and 
third-order theories are converted into a single-order system of equations by using state 
variables. The biorthogonality conditions of principal modes of the original and adjoint 
eigenfunctions are used to decouple the state space equations. An approach to utilize these 
modal quantities to obtain the forced response of shallow shells subjected to arbitrary loads 
is presented. 

The numerical results for the deflection and stress responses are presented for shells 
with several different boundary conditions. To demonstrate the effect of shear defonnation, 
the numerical results for the nonnal stress of antisymmetric cross-ply shells obtained by the 
third- and first- order theories are compared with the results obtained by the classical shell 
theory. It is noted that the first- and third- order theories seem to give very close results 
different than those of the classical theory because the classical theory ignm·es the effect of 
shear defonnation. The nonnal stresses of shells with more end constraints ( such as SSCC 
and SSCS shells) are seen to be more affected by the shear defonnation than the shells with 
less end constraints (such as SSSS, SSFF, SSFS, SSFC) shells. As expected, difference is 
observed in the transverse shear stress calculated by the third-order and first-order theory 
because the third-order theory accounts for a layer-wise parabolic distribution of transverse 
shear stress whereas the first-order theory accounts for layer-wise constant states of 
transverse shear stress. 
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Appendix A 

The coefficients appearing in Eq, (\5) are : 

Ci = (e7e30-e3e34)/eo.cz = (e2e30-e3eZ9)/ eO ,C3 = (e6e30- e3e33)/ eo , 

C4 = (ese,o-e,e'2)/ eo ,cs = (ese,o-e,e,sl/eo,c6 = (e4e,o-e,e'll / eo, 

C7 = (ege39-e12e36)/co,cs = (eI4e39-elze41)/co,C9 = (e16 e39-e12 e43)/ co , 

Cto = (e13e39-elze40)/cO,Cll = (elle39-e12e3s)/cO,c12 = (else39- elz e4z)/ co , 

q9 = (ele34-e7ezs)/eo.czo = (eleZ9-ezezs)!eo.cZI = (ele3re()ezs) /eo. 

C22 = (ele'2-ese2sl/eo,c2' = (ele,s-ese2sl / eo,C24 = (ele'l-e4 e2sl / eo, 
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CZ5 = (elOe36-ege37)/co,CZ6 = (elOe41-eI4e37)/cO,CZ7 = (elOe4re16 e37)/ co , 

czs = (elOe40-ene37)/co.CZ9 = (eIOe3s-elle37)/co.C)o = (eIOe4z-else37)/co, 

CD = ao(qeZI+c7al+czsaZ+CIgeZ3+eZ6),Ci4 = ao(csat+cZ6az+e27), 

cl5 = ao(c9al+c27az+eZO),Q6 = ao(clOal+czsaZ+C3eZI+CZleZ3+elS)' 

Ci7 = aO(Cllal+cZ9a2+cseZl+C23eZ3+e17)'CIS = ao(c12al+c30az+eI9), 

bl = (e,mls-e,omll / eo,b2 = (e,mI4-e,om,l/eo,b, = (e,ml,-e,om2l / eo, 

b4 = (eIZffils-e39m4)/cQ.bs = (elZffilre39ffi6)/cQ,b6 = (e12mI6-e39ffis)/ co . 

b13 = (eZSffil-el ffi15) leQ,b14 = (e2sm3-elffi14)/eQ,bI5 = (ezsmrelml3)/ eQ . 

bl6 = (e37m4-elOmlsl/co,bI7 = (e'7m6-elOmI7l/co,bIS = (e'7ms-elOmI6l/co, 

b7 = .0(e2Ibl+e2,b13-mll),bs = '0(b4'I+bI6'2-mI2),b9 = '0(bS'I+bI7'2-m7), 

blO = '0 (e21 b2 +e2' bl4 -msl, bll = .o( e21 b, +e23bIS- m9l, 

biz = ao(b6a\+blsaz-mlO),eQ = e3e2S-ele30,cQ = e12e37-elOe39' 

ao = -1/(c4eZl+C22eZ3+ezs),al = c2ezl+czoez3+ezz,az = C6e2I+cz4ez3+ez4' 
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where 

el = All, e2 = - ~ ( AI2 + A66), e3 = BII - 02 Ell ' 

e4 = ~ [ 02 ( E12 + E66 ) - B12 - B66], es = - 02 Ell ' 

e6 = 02 [ ~2 ( E12 + 2 E66 ) 1 + AliI RI + A121 R2 ' e7 = - ~2 A66 ' 

e8 = ~2 (02 E66- B66), e9 = -e2, elO = A66, 

ell = - 04, e12 = B66 - 02 E66, el3 = - ~ 02 ( E12 + 2 E66 ), el4 = - ~2 A22, 

elS = ~2(02E22-B22),eI6 = 02~3E22+~(A12/RI+A22/R2)' 
el7 = Ass - 01 Dss - 01 (Dss - 01 Fss) + 

02 ~2 [ 02 (H12 + 2 H66) - (F12 + 2 F66) 1- (Bll- 02 Ell) I RI- (B12 - 02 E12) I R2, 

el8 = Ass - 01 DS5 - 01 (Dss - 01 Fss) + o~ ~2 [2 H12 + 4 H661 

+ 2 02 (Ell I RI + E121 R2), 

el9 = - ~ [ A44 - 01 D44 - 01 ( D44 - 01 F44 ) 1 + 02 ~3 (F22 - n2 H22) 

+ ~ (B12 - n2 E12) I RI + ~ (B22 - n2 E22) I R2, 

e20 = -~2[A44-0ID44-nl(D44-D1F44)1-n~~4H22 

- 2 n2 ~2 (E121 RI + E221 R2)- All I Rr- 2A121 (RI R2) - A221 R~, 
e21 = -es,e22 = e13,e23 = 02(Fll-02Hll)' 

e24 = ~n2[02(2H66+H12)-(F12+2F66)],e2S = -n~Hll,e26 = -e6, 

e27 = e16,e28 = e3,e29 = e4,e30 = Dll-2n2Fll+o~Hll' 

e31 = ~[2n2(F12+F66)-n~(H12+H66)-D12-D66],e32 = -e23,e33 = -e17, 

e34 = e8,e3S = D1 (Dss- D1 F55) - (AS5 - D1 D5S) + ~2[ 2 n2F66- D66- n~H66], 

e36 = -e4,e37=e12,e38 = -e31,e39 = D66-202F66+n~H66,e40 = e24,e41 = elS, 

e42 = nl(D44-nIF44)-(A44-D1D44)+~2[202F22-D22-0~H22],e43 = e19, 

ml = J;,m2 = h,m3 = -J;,m4 = J;',ms = h',m6 = -~J;',m7 = iJ+~20~I7' 

m8 = -n~I7,m9 = I;,mlo = -~I;,mll = -m3,m12 = m6,m13 = L;,mI4 = -m9, 

fil5 = ffi2,ffil6 ::;: m13,ffi17 ::;: mlO,ffil8 ::;: fiS! 
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The coefficients appearing in Eq. (16) are: 

CI = (e3e21-eseI9)/eo.C2 = (e3els-e2eI9)/eo,c3 = (e3e2reIg e31) /eo, 

C4 = (e3e22 -e6eI9) I eo, cs = (e3e20- e4e19)1 eo, C6 = (ese27 - elOe2S) I co' 

C7 = (ell e2r elOe2S) I co,cs = (e27 e32 -elOe30) I co' C9 = (ege2r elOe26) I co' 

CIO = (el2e27-elOe29)/cO,Cll = -e33 / e13,CI2 = -e34 / e13,CI3 = -els/e13' 
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CI4 = -eI4/e13,CIS = -eI6fe13,Ci6 = (esel7-ele21)/eO,Cl7 = (e2e17- el els)/ eo , 

CIS = (el7 e31 -<I e23)1 eo, CI9 = (e6el7 -ele22) I eO,C20 = (qel7 - el e20) I eo, 

C21 = (e7e2s-ese24)leo,c22 = (e7 e2s-ell e24) leo, C23 = (e7e30-e24e32)/ co , 

C24 = (e7e26- e9 e24) I co' C2S = (e7 e29-e12e24) I co' bl = (e19 11- e3 Iz) I eo, 

b2 = (e191z -e313) I eo, b3 = (elOIz - e27 II ) leo ' b4 = (elOIr e27 Iz) I co' 

bs = It I eI3, b6 = (etl2 -el7It)1 eo, b7 = (el Ir el7 Iz) I eo, bs = (e24 It -e7 Iz) I co' 

b9 = (e24Iz -e7 13) I CO, eo = el e19- e3e17, CO = elOe24 - <7 e27, aD = -11 eI3. 

where 

el = All,e2 = -~(AI2+A66),e3 = BIl,q = -~(Bl2+B66),es = _~2 A66, 

<6 = -~2B66,e7 = A66,es = -e2,e9 = -e4,elO = B66,ell = _~2 A22, 

el2 = _~2B22,e13 = Kgs Ass,el4 = KgsAss-BIl/RI-Bl2/R2' 

elS = - ~2 K~A44- Alii Rf- 2 AI21 (RI R2) - A221 R~, 

el6 = -~K~4A44+~(Bl2/RI+B22/R2),el7 = e3,elS = e4, 

el9 = DIl,e20 = -~(DI2+D66),e21 = e6,e22 = _~2D66-KgsAss, 
e23 = -e14,e24 = elO,e25 == -e4,e26 == -e20,e27 = D66, 

e2S = e12,e29 = _~2D22-K~A44,e30 = ~16,e31 = AII/RI+AI2/R2, 

e32 = ~(Al2/RI+A22/R2),e33 = -e31,e34 = e32' 
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The coefficients appearing in Eq. (17) are: 

CJ = -e2/el.c2 = -e3iel.c3 = -e51e1.c4 = -e4 / el.c5 = -e6/e7. 

C6 = - es /07'C7 = -elO/e7'cS = -f"}/ e7 •c9 = -e21 / eIS.clO = -e22 / eIS. 

OIl = -e20 / els.C12 = -eI9/els.bl = II / el.b2 = -12 1e1' 

b3 = Il/ e7 .b4 = -~l2/e7.b5 = -IIeI4 / (elels)-l2/eIS. 

b6 = - II el6 1 (e7 elS) + II e3el41 (el e7elS) +~121 eiS. 

b7 = - (II + ~213) I els +~ l2el6 1 (e7 elS) - ~l2e3e141 (el e7eIS)' 

bs = I3 / els+l2eI4 / (elels).ao = l/elS' 

where 

el = All. e2 = - ~2 A66. e3 = - ~ (A12 + A66). 04 = - BIl. 

e5 = ~2(B12+2B66)+AIl/RI+AI2/R2.e6 = -e3.e7 = A66.es = _~2A22' 

e9 = -~(B12+2B66),elO = ~3B22+~(A12/RI+A22/R2),ell = Oil. 

el2 = - 2 ~2( 012 + 2066) - 2 (BIl/RI + B121 R2), 

el3 = ~4022 + Alii Rf + 2A121 (RI R2) + A221 R~ + 2 ~2( B121 RI + B221 R2). 

ef4:::; e4.e15:::; es.e16:::; -e9.e17:::; -elO.eI8:::; ell-e4eI4/el' 

el9 = e12-e5eI4/el-egeI6/07+e3egeI4/(ele7). 

e20 = e13-elOeI6/e7+e3eloeI4/(ele7). 

e21 = eI5-e2eI4/el-e6eI6/e7+e3e6eI4/(ele7). 

e22 = e17-eseI6/e7+e3eseI4/(ele7)' 
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Appendix B 

The matrices [K] and [M] in Eq. (21) 

HSDT 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 
[ K ]= 0 0 0 0 0 0 0 0 0 0 0 

CiS 0 Ci6 0 Ci4 0 CiS 0 Ci3 0 Cl7 0 

0 C3 0 Ci 0 C5 0 C4 0 C2 0 C6 

C9 0 CiO 0 CS 0 Ci2 0 C7 0 CII 0 

0 C21 0 CI9 0 C23 0 C22 0 020 0 C24 

C27 0 C2S 0 C26 0 C30 0 C25 '0 C29 0 
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0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 o· 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 
[ M 1= 0 0 0 0 0 0 0 0 0 0 0 0 

b9 0 blO 0 bs 0 b12 0 b7 0 bll 0 

0 b2 0 bl 0 b3 0 0 0 0 0 0 

bs 0 0 0 b4 0 b6 0 0 0 0 0 

0 bl4 0 bl3 0 bls 0 0 0 0 0 0 

bl7 0 0 0 bl6 0 bls 0 0 0 0 0 

FSDT 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
[ K 1= 

CI3 0 CI2 0 CIS 0 CII 0 CI4 0 

0 CI 0 C4 0 C3 0 C2 0 cs 

cs 0 C7 0 CIO 0 C6 0 C9 0 

0 CI6 0 CI9 0 CIS 0 CI7 0 C20 

C23 0 C22 0 C2S 0 C21 0 C24 0 
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0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

[ M 1= bs 0 0 0 0 0 0 0 0 0 

0 bl 0 b2 0 0 0 0 0 0 

0 0 b3 0 b4 0 0 0 0 0 

0 b6 0 b7 0 0 0 0 0 0 

0 0 bs 0 b9 0 0 0 0 0 

CST 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
[ K 1= 

0 0 0 0 0 0 0 

CI1 0 CI2 0 CIO 0 C9 0 

0 C3 0 Cj 0 C4 0 C2 

C7 0 cs 0 C6 0 cs 0 
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0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
[M ]= 

0 0 0 0 0 0 0 0 

b7 0 bs 0 b6 0 b5 0 

0 b2 0 bl 0 0 0 0 

b4 0 0 0 b3 0 0 0 

Appendix C 

The coefficients d, appearing in Eq. (39) are: 

[ :; :: :: ]=-[ :: 
d7 ds d9 SIS 

[ 

dlO dll 

dl3 dl4 

d16 dl7 

d12] [S21 
dIS =- S26 

dIS S39 

s:: :: lOll s:: :~ s:: j 
Sl6 514 Sl8 813 817 

SI9 S22]_I[ 0 S20 

S24 S27 0 S25 

837 840 842 838 

S23] 
S2S 

S41 
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where 

SI = All, S2 = -~ AI2, S3 = n2 ~2 EI2 + Alii RI + AI21 R2, S4 = -n2 Ell, 

S5 = BII- n2 Ell' S6 = ~ (n2 EI2 - BI2), S7 = BII, S8 = -~ B12, 

S9 = ~2n2FI2+BII/RI+BI2/R2'SIO = -n2FIl, 

SII = DII-n2FII,SI2 = ~(n2FI2-DI2),S13 = EII,SI4 = -~EI2' 
SI5 = n2~2HI2+EII/RI+EI2/R2,SI6 = -n2HIl,SI7 = FII-n2HII' 

SI8 = ~(n2HI2-FI2),SI9 = ~A66,S20 = A66,S21 = -2~n2E66' 
S22 = ~(B66-n2E66),S23 = B66-n2E66,S24 = S22,S25 = S23, 

S26 = 2 ~n2( n2H66- F66 ),S27 = ~ (D66- 2 n2F66 + n~H66)' 

S28 = S27 I ~, S29 = A55 -0] D55 -0] ( D55 - nl F55 ) + ~2 n2 ( n2 H66 - F66), 
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S30 = A55 -0] D55 - nl (D55 - nl F55) + ~2 n~ (HI2 + 2 H66) + n2 (EIII RI + EI2I R2), 

S31 = n2EII,s32 = -~n2(EI2+E66)'S33 = n2(FII-n2HII), 

S34 = ~n2(n2HI2+n2H66-FI2-F66),S35 = -n~HII,s36 = -n2~2E66' 
S37 = S31(CJ-~bt)+S33(CJ9-~b13)+S36,S38 = S3IC2+S33C20+S32' 

S39 = S30+S31(C3-~b2)+S33(C21-~bI4), 

S40 = S29 + S31 (C5 -~ b3) +S33(C23-~ b15), 

S41;:: S3IC6+S33C24+S34.S42;:: S3IC4+S33C22+S3S' 

The coefficients d; appearing in Eq. (40) are: 

dl = [BIl(BII/RI+BI2/Rz)-DIl(AII/RI+AI2/R2)]/eo, 

d2 = ~(AI2DIl-BIIBI2)/eo, 

d3 = ~(BI2DII-BIIDI2)/eo,d4 = (AI2BII-AIlBI2)/(eoR2)' 

d5 = ~(AIIBI2-AI2BIl)/eo,d6 = ~(AI·IDI2-BIIBI2)/eo· 
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The coefficients d, appearing in Eq. (41) are: 

dl = (S4S6-S2SS)/so,d2 = (S4SS-SISS)/so,d3 = (S2S7-S3S6)/so, 

d4 = (slsrs3ss)/so ,ds = S9slS /do,d6 = (S9S13-SIOS12)/do, 

d7 = -SllsIS/do,ds = (SIOSI4-S11S13)/do, 

so == s3sg-s4S7.do == 811512-S9514. 

where 

SI = AII,S2 = -~A12,S3 = ~2BI2+All/RI+AI2/R2,S4 = -BII,ss = Bll' 

S6 = -~BI2,S7 = ~2DI2+BIl/RI+B12/R2'SS = -DII,S9 = ~(A66+B66/R2)' 
SIO = S9 1 ~,SII = - 2 ~(B66 + D66 1 R2)' 

SI2 = - BIl e2 1 el - (j)~dl Bill el - 2 ~2 B66' S13 = - BIl e3 1 el - ~ B12 - 2 ~ B66, 

SI4 = ~2 (DI2+4 D66) + Bill RI + BI21 R2 - Bllesl el + roi\, BIl Izi el, 

SI5 = -Blle4 / el-Dll· 
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