Analysis of the Dynamic Response of Cross-ply Laminated Shallow Shells with Various Boundary Conditions

A. A. Khdeir
Department of Mechanical Engineering, King Saud University
Riyadh. Kingdom of Saudi Arabia

(Received 24 April 1998; accepted for publication 19 August 1999)

Abstract

Analytical solutions of the dynamic response of the classical, first-order and third-order theories of cross-ply laminated shallow shells are developed for various boundary conditions. The solutions are applicable to laminated shells with two opposite edges simply supported and the remaining ones can have arbitrary combinations of free, clamped and simply supported boundary conditions. A Levy type method in conjunction with generalized modal approach is used to obtain these solutions. For thick shells, the classical shell theory predicts deflections and stresses significantly different from those of the third-order theory. The third-order theory and first-order theory results are very close to each other for response and normal stress. However, the third-order theory does not require the use of shear correction factors.

Introduction

The analysis of laminated composite shells has been the subject of significant research interest in recent years. The classical lamination shell theories based on the Love-Kirchhoff assumptions are adequate to predict the gross behavior of thin laminates. A survey of different classical lamination theories can be found in [1-2]. When the structures are rather thick or when they exhibit high anisotropy ratios, the transverse shear deformation effect has to be incorporated. In such cases more refined theories are needed. Numerous firstorder and higher-order shear deformation theories of laminated composite shells are presented in the literature [3-11]. The third-order theory used in the present study is proposed by Reddy and Liu [5], in which the surface displacements are expanded up to the cubic term in thickness coordinate while the transverse deflection is assumed to be constant through the thickness. The nine undetermined functions are reduced to five by imposing stress-free boundary conditions on the transverse shear stress on the bounding surfaces of the shell. Since the theory accounts for parabolic distribution of the transverse shear stresses, no shear correction coefficients are required.

Closed-form solutions for the dynamic response of laminated plates and shells have been developed mainly for the case of simply supported boundary condition [12-19]. Analytical solutions for the dynamic response of composite laminates for a variety of boundary conditions are developed in [20-24], where in [24], a brief note is introduced about shallow shells. Ritz, Galerkin and other approximate methods are used for general boundary conditions and lamination schemes.

In the present work, a generalized modal approach in conjunction with Levy method is presented to solve for the transient response of cross-ply laminated shallow shells with various boundary conditions and for arbitrary loadings. The equations of motions of the classical, first-order and third-order theories are converted into a single-order system of equation by using state variables. The biorthogonality conditions of principal modes of the original and adjoint eigenfunctions are used to decouple the state space equation. To demonstrate the method, numerical results of the three theories for center deflections and stresses of spherical shells subjected to sinusoidal loading in spatial domain and sine pulse loading in time domain are presented.

Equations of Motion

The higher-order shear deformation theory (HSDT) used in the present study is based on the following displacement field (see Reddy and Liu [5]):

$$
\begin{gather*}
\overrightarrow{\mathrm{u}}=\left(1+\frac{\zeta}{\mathrm{R}_{1}}\right) \mathrm{u}+\zeta \phi_{1}-\mathrm{n}_{2} \zeta^{3}\left(\phi_{1}+\frac{1}{\alpha_{1}} \frac{\partial \mathrm{w}}{\partial \xi_{1}}\right) \\
\overline{\mathrm{v}}=\left(1+\frac{\zeta}{\mathrm{R}_{2}}\right) \mathrm{v}+\zeta \phi_{2}-\mathrm{n}_{2} \zeta^{3}\left(\phi_{2}+\frac{1}{\alpha_{2}} \frac{\partial w}{\partial \xi_{2}}\right) \\
\overline{\mathrm{w}}=\mathrm{w} \tag{1}
\end{gather*}
$$

where $\overline{\mathbf{u}}, \overline{\mathbf{v}}, \overline{\mathbf{w}}$ are the displacements along the orthogonal curvilinear coordinates such that the ξ_{1} and ξ_{2}-curves are lines of principal curvature on the midsurface $\zeta=0$, and ζ-curves are straight lines perpendicular to the surface $\zeta=0,(u, v, w)$ are the displacements of a point on the middle surface, and ϕ_{1} and ϕ_{2} are the rotations at $\zeta=0$ of normals to the mid surface with respect to the ξ_{2} and ξ_{1}-axes, respectively. The parameters R_{1} and R_{2} denote the values of the principal radii of curvature of the middle surface (see Fig. 1), and α_{1} and α_{2} are the surface metrics. All displacement components ($u, v, w, \phi_{1}, \phi_{2}$) are functions of $\left(\xi_{1}, \xi_{2}\right)$ and time t.

Fig. 1. Geometry and coordinate system of a double curved shell panel.
Substituting Eq. (1) into the linear strain-displacement relations of a shell referred to an orthogonal curvilinear coordinate system, we obtain

$$
\begin{align*}
& \varepsilon_{1}=\varepsilon_{1}^{0}+\zeta\left(\kappa_{1}^{0}+\gamma \zeta^{2} \kappa_{1}^{2}\right) \\
& \varepsilon_{2}=\varepsilon_{2}^{0}+\zeta\left(\kappa_{2}^{0}+\gamma \zeta^{2} \kappa_{2}^{2}\right) \\
& \varepsilon_{4}=\varepsilon_{4}^{0}+\gamma \zeta^{2} \kappa_{4}^{1} \\
& \varepsilon_{5}=\varepsilon_{5}^{0}+\gamma \zeta^{2} \kappa_{5}^{1} \\
& \varepsilon_{6}=\varepsilon_{6}^{0}+\zeta\left(\kappa_{6}^{0}+\gamma \zeta^{2} \kappa_{6}^{2}\right) \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& \varepsilon_{1}^{0}=\frac{\partial \mathrm{u}}{\partial \mathrm{x}_{1}}+\frac{\mathrm{w}}{\mathrm{R}_{1}}, \quad \kappa_{1}^{0}=\frac{\partial \phi_{1}}{\partial \mathrm{x}_{1}}, \quad \kappa_{1}^{2}=-\mathrm{n}_{2}\left(\frac{\partial \phi_{1}}{\partial \mathrm{x}_{1}}+\frac{\partial^{2} \mathrm{w}}{\partial \mathrm{x}_{1}^{2}}\right), \\
& \varepsilon_{2}^{0}=\frac{\partial \mathrm{v}}{\partial \mathrm{x}_{2}}+\frac{\mathrm{w}}{\mathrm{R}_{2}}, \quad \kappa_{2}^{0}=\frac{\partial \phi_{2}}{\partial \mathrm{x}_{2}}, \quad \kappa_{2}^{2}=-\mathrm{n}_{2}\left(\frac{\partial \phi_{2}}{\partial \mathrm{x}_{2}}+\frac{\partial^{2} \mathrm{w}}{\partial \mathrm{x}_{2}^{2}}\right), \\
& \varepsilon_{4}^{0}=\phi_{2}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}_{2}}, \quad \kappa_{4}^{1}=-\mathrm{n}_{1}\left(\phi_{2}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}_{2}}\right), \\
& \varepsilon_{5}^{0}=\phi_{1}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}_{1}}, \quad \kappa_{5}^{1}=-\mathrm{n}_{1}\left(\phi_{1}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}_{1}}\right), \\
& \varepsilon_{6}^{0}=\frac{\partial \mathrm{v}}{\partial \mathrm{x}_{1}}+\frac{\partial \mathrm{u}}{\partial \mathrm{x}_{2}}, \quad \kappa_{6}^{0}=\frac{\partial \phi_{2}}{\partial \mathrm{x}_{1}}+\frac{\partial \phi_{1}}{\partial \mathrm{x}_{2}}, \quad \kappa_{6}^{2}=-\mathrm{n}_{2}\left(\frac{\partial \phi_{2}}{\partial \mathrm{x}_{1}}+\frac{\partial \phi_{1}}{\partial \mathrm{x}_{2}}+2 \frac{\partial^{2} \mathrm{w}}{\partial \mathrm{x}_{1} \partial \mathrm{x}_{2}}\right) . \tag{3}
\end{align*}
$$

Here x_{i} denote the cartesian coordinates ($\mathrm{dx}_{\mathrm{i}}=\alpha_{i} d \xi_{\mathrm{i}}, i=1,2$), and $\mathrm{n}_{1}=4 / \mathrm{h}^{2}$ and $\mathrm{n}_{2}=$ $n_{1} / 3$.

The stress-strain relations for the kth lamina are given by

$$
\left\{\begin{array}{c}
\sigma_{1} \tag{4}\\
\sigma_{2} \\
\sigma_{6} \\
\sigma_{4} \\
\sigma_{5}
\end{array}\right\}_{(\mathbf{k})}=\left[\begin{array}{ccccc}
\mathrm{Q}_{11} & \mathrm{Q}_{12} & \mathrm{Q}_{16} & 0 & 0 \\
& \mathrm{Q}_{22} & \mathrm{Q}_{26} & 0 & 0 \\
& & \mathrm{Q}_{66} & 0 & 0 \\
& & \text { symm. } & & \mathrm{Q}_{44} \\
& & & & 0 \\
& & & & \mathrm{Q}_{55}
\end{array}\right]_{(\mathrm{k})}\left\{\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{6} \\
\varepsilon_{4} \\
\varepsilon_{5}
\end{array}\right\}
$$

Where σ_{1}, σ_{2} are normal components; and $\sigma_{6}, \sigma_{4}, \sigma_{5}$ are shear stress components (see Fig.2); and $\mathrm{Q}_{\mathrm{ij}}{ }^{(\mathrm{k})}$ are the material constants of the kth lamina in the laminate coordinate system.

Fig. 2. Stress components in shell coordinates.
Using Hamilton's principle, the equations of motion appropriate for the displacement field (1) and the constitutive equations (4) are derived in [5] as:

$$
\begin{aligned}
& \frac{\partial N_{1}}{\partial \mathrm{x}_{1}}+\frac{\partial \mathrm{N}_{6}}{\partial_{\mathrm{X} 2}}=\overline{\mathrm{I}_{1}} \ddot{\mathrm{u}}+\overline{\mathrm{I}_{2}} \ddot{\phi}_{1}-\gamma \overline{\mathrm{I}}_{3} \frac{\partial \ddot{\mathrm{w}}}{\partial \mathrm{X}_{1}} \\
& \frac{\partial N_{6}}{\partial x_{1}}+\frac{\partial N_{2}}{\partial x_{2}}=\overline{I_{1}} \ddot{v}+\overline{I_{2}} \ddot{\phi}_{2}-\gamma_{I_{3}}^{\prime} \frac{\partial \ddot{\mathrm{w}}}{\partial_{x_{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{1} \ddot{\mathrm{w}}+\gamma\left[\overline{\mathrm{I}_{3}} \frac{\partial \ddot{\mathrm{u}}}{\partial \mathrm{x}_{1}}+\overline{\mathrm{I}_{5}} \frac{\partial \ddot{\phi}_{1}}{\partial \mathrm{x}_{1}}+\overline{\mathrm{I}_{3}} \frac{\partial \ddot{\mathrm{v}}}{\partial \mathrm{x}_{2}}+\overline{\mathrm{I}_{5}} \frac{\partial \ddot{\phi}_{2}}{\partial \mathrm{x}_{2}}-\mathrm{n}_{2}^{2} \mathrm{I}_{7}\left(\frac{\partial^{2} \ddot{\mathrm{w}}}{\partial \mathrm{x}_{1}^{2}}+\frac{\partial^{2} \ddot{\mathrm{w}}}{\partial \mathrm{x}_{2}^{2}}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial M_{6}}{\partial \mathrm{x}_{1}}+\frac{\partial \mathrm{M}_{2}}{\partial_{\mathrm{x}_{2}}}-\mathrm{Q}_{2}+\gamma_{\mathrm{n}_{1} K_{2}}-\gamma_{\mathrm{n}_{2}}\left(\frac{\partial \mathrm{P}_{6}}{\partial_{\mathrm{x}_{1}}}+\frac{\partial \mathrm{P}_{2}}{\partial_{\mathrm{x}_{2}}}\right)=\overline{\mathrm{I}_{2}}{ }^{\prime} \ddot{\mathrm{v}}+\bar{I}_{4}{ }^{\prime} \ddot{\phi}_{2}-\gamma_{\mathrm{IS}_{5}^{\prime}} \frac{\partial \ddot{\mathrm{w}}}{\partial_{\mathrm{x}_{2}}} \tag{5}
\end{align*}
$$

where superposed dot denotes differentiation with respect to time, q is the distributed transverse load which is the only external load considered in the analysis, and N_{i}, M_{i}, \ldots are the stress resultants:

$$
\begin{align*}
& \left(N_{i}, M_{i}, P_{i}\right)=\sum_{k=1}^{N} \int_{k-1}^{\zeta_{k}} \sigma_{i}^{(k)}\left(1, \zeta, \zeta^{3}\right) d \zeta \quad(i=1,2,6) \\
& \left(Q_{1}, K_{1}\right)=\sum_{k=1}^{N} \int_{k-1}^{\zeta_{k}} \sigma_{5}^{(k)}\left(1, \zeta^{2}\right) d \zeta \\
& \left(Q_{2}, K_{2}\right)=\sum_{k=1}^{N} \int_{\zeta_{k-1}}^{\zeta_{k}} \sigma_{4}^{(k)}\left(1, \zeta^{2}\right) d \zeta . \tag{6}
\end{align*}
$$

The inertias are defined by the equations,

$$
\begin{align*}
& \overline{I_{1}}=I_{1}+\gamma \frac{2}{R_{1}} I_{2}, \\
& \overline{I_{2}}=I_{2}+\gamma \frac{1}{R_{1}} I_{3}-\gamma n_{2} I_{4}-\gamma \frac{n_{2}}{R_{1}} I_{5}, \\
& \overline{I_{3}}=n_{2} I_{4}+\frac{n_{2}}{R_{1}} I_{5}, \\
& \overline{I_{4}}=I_{3}-2 \gamma n_{2} I_{5}+\gamma_{n_{2}}^{2} I_{7}, \\
& \overline{I_{5}}=n_{2} I_{5}-n_{2}^{2} I_{7}, \\
& \left(I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{7}\right)=\sum_{k=1}^{N} \int_{\zeta_{k-1}}^{\zeta_{k}} \rho^{(k)}\left(1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{6}\right) d \zeta \tag{7}
\end{align*}
$$

Where $\rho^{(k)}$ is the mass density of the lamina per unit volume and \bar{I}_{i}^{\prime} are the same as \bar{I}_{i} except that R_{1} is replaced by R_{2}. The resultants are related to the total strains by

$$
\begin{align*}
& \mathrm{N}_{\mathrm{i}}=\mathrm{A}_{\mathrm{ij}} \varepsilon_{\mathrm{j}}^{0}+\mathrm{B}_{\mathrm{ij}} \mathrm{k}_{\mathrm{j}}^{0}+\gamma \mathrm{E}_{\mathrm{ij}} \kappa_{\mathrm{j}}^{2} \\
& \mathrm{M}_{\mathrm{i}}=\mathrm{B}_{\mathrm{ij}} \varepsilon_{\mathrm{j}}^{0}+\mathrm{D}_{\mathrm{ij}} \kappa_{\mathrm{j}}^{0}+\gamma \mathrm{F}_{\mathrm{ij}} \kappa_{\mathrm{j}}^{2} \\
& \mathrm{P}_{\mathrm{i}}=\mathrm{E}_{\mathrm{ij}} \varepsilon_{\mathrm{j}}^{0}+\mathrm{F}_{\mathrm{ij}} \kappa_{\mathrm{j}}^{0}+\mathrm{H}_{\mathrm{ij}} \kappa_{\mathrm{j}}^{2} \tag{8}
\end{align*}
$$

for $\mathrm{i}, \mathrm{j}=1,2,6$

Substitution of Eqs. (13) and (14) into the equations of motion of the three theories results in the following systems of equations

HSDT

$$
\begin{align*}
& U_{m}{ }^{\prime \prime}=c_{1} U_{m}+c_{2} V_{m}{ }^{\prime}+c_{3} W_{m}{ }^{\prime}+c_{4} W_{m}{ }^{\prime \prime \prime}+c_{5} \Phi_{1 m}+c_{6} \Phi_{2 m}{ }^{\prime} \\
& +b_{1} \ddot{U}_{m}+b_{2} \ddot{W}_{m}+b_{3} \ddot{\Phi}_{1 m} \\
& V_{m}{ }^{\prime \prime}=c_{7} U_{m}{ }^{\prime}+c_{8} V_{m}+c_{9} W_{m}+c_{10} W_{m}{ }^{\prime \prime}+c_{11} \Phi_{1 m}{ }^{\prime}+c_{12} \Phi_{2 m} \\
& +b_{4} \ddot{V}_{m}+b_{5} \ddot{W}_{m}+b_{6} \ddot{\Phi}_{2 m} \\
& W_{m}{ }^{\prime \prime \prime}=c_{13} U_{m}{ }^{\prime}+c_{14} V_{m}+c_{15} W_{m}+c_{16} W_{m}{ }^{\prime \prime}+c_{17} \Phi_{1 m}{ }^{\prime}+c_{18} \Phi_{2 m} \\
& +b_{7} \ddot{U}_{m}{ }^{\prime}+b_{8} \ddot{V}_{m}+b_{9} \ddot{W}_{m}+b_{10} \ddot{W}_{m}{ }^{\prime \prime}+b_{11} \ddot{\Phi}_{1 m}{ }^{\prime}+b_{12} \ddot{\Phi}_{2 m}+a_{0} f_{m} \\
& \Phi_{1 m}{ }^{\prime \prime}=c_{19} U_{m}+c_{20} V_{m}{ }^{\prime}+c_{21} W_{m}{ }^{\prime}+c_{22} W_{m}{ }^{\prime \prime}+c_{23} \Phi_{1 m}+c_{24} \Phi_{2 m}{ }^{\prime} \\
& +b_{13} \ddot{U}_{m}+b_{14} \ddot{W}_{m}{ }^{\prime}+b_{15} \ddot{\Phi}_{1 m} \\
& \Phi_{2 m}{ }^{\prime \prime}=c_{25} U_{m}^{\prime}+c_{26} V_{m}+c_{27} W_{m}+c_{28} W_{m}{ }^{\prime \prime}+c_{29} \Phi_{1 m}{ }^{\prime}+c_{30} \Phi_{2 m} \\
& +b_{16} \ddot{V}_{m}+b_{17} \ddot{W}_{m}+b_{18} \ddot{\Phi}_{2 m} \tag{15}
\end{align*}
$$

FSDT

$$
\begin{align*}
& \mathrm{U}_{\mathrm{m}}{ }^{\prime \prime}=\mathrm{c}_{1} \mathrm{U}_{\mathrm{m}}+\mathrm{c}_{2} \mathrm{~V}_{\mathrm{m}}{ }^{\prime}+\mathrm{c}_{3} \mathrm{~W}_{\mathrm{m}}{ }^{\prime}+\mathrm{c}_{4} \Phi_{1 \mathrm{~m}}+\mathrm{c}_{5} \Phi_{2 \mathrm{~m}}{ }^{\prime}+\mathrm{b}_{1} \ddot{\mathrm{U}}_{\mathrm{m}}+\mathrm{b}_{2} \ddot{\Phi}_{1 m} \\
& \mathrm{~V}_{\mathrm{m}}{ }^{\prime \prime}=\mathrm{c}_{6} \mathrm{U}_{\mathrm{m}}{ }^{\prime}+\mathrm{c}_{7} \mathrm{~V}_{\mathrm{m}}+\mathrm{c}_{8} \mathrm{~W}_{\mathrm{m}}+\mathrm{c}_{9} \Phi_{1 \mathrm{~m}}{ }^{\prime}+\mathrm{c}_{10} \Phi_{2 \mathrm{~m}}+\mathrm{b}_{3} \ddot{\mathrm{~V}}_{\mathrm{m}}+\mathrm{b}_{4} \ddot{\Phi}_{2 \mathrm{~m}} \\
& \mathrm{~W}_{\mathrm{m}}{ }^{\prime \prime}=\mathrm{c}_{11} \mathrm{U}_{\mathrm{m}}{ }^{\prime}+\mathrm{c}_{12} \mathrm{~V}_{\mathrm{m}}+\mathrm{c}_{13} \mathrm{~W}_{\mathrm{m}}+\mathrm{c}_{14} \Phi_{1 \mathrm{~m}}{ }^{\prime}+\mathrm{c}_{15} \Phi_{2 \mathrm{~m}}+\mathrm{b}_{5} \ddot{\mathrm{~W}}_{\mathrm{m}}+\mathrm{a}_{0} \mathrm{f}_{\mathrm{m}} \\
& \Phi_{1 m}{ }^{\prime \prime}=\mathrm{c}_{16} \mathrm{U}_{\mathrm{m}}+\mathrm{c}_{17} \mathrm{~V}_{\mathrm{m}}{ }^{\prime}+\mathrm{c}_{18} \mathrm{~W}_{\mathrm{m}}{ }^{\prime}+\mathrm{c}_{19} \Phi_{1 \mathrm{~m}}+\mathrm{c}_{20} \Phi_{2 \mathrm{~m}}{ }^{\prime}+\mathrm{b}_{6} \ddot{\mathrm{U}}_{\mathrm{m}}+\mathrm{b}_{7} \ddot{\Phi}_{1 \mathrm{~m}} \\
& \Phi_{2 m}{ }^{\prime \prime}=c_{21} U_{m}{ }^{\prime}+c_{22} V_{m}+c_{23} W_{m}+c_{24} \Phi_{1 m}{ }^{\prime}+c_{25} \Phi_{2 m}+b_{8} \ddot{V}_{m}+b_{9} \ddot{\Phi}_{2 m} \tag{16}
\end{align*}
$$

CST

$$
\begin{align*}
& U_{m}^{\prime \prime}=c_{1} U_{m}+c_{2} V_{m}{ }^{\prime}+c_{3} W_{m}{ }^{\prime}+c_{4} W_{m}{ }^{\prime \prime \prime}+b_{1} \ddot{U}_{m}+b_{2} \ddot{W}_{m}^{\prime} \\
& V_{m}^{\prime \prime}=c_{5} U_{m}^{\prime}+c_{6} V_{m}+c_{7} W_{m}+c_{8} W_{m}^{\prime \prime}+b_{3} \ddot{V}_{m}+b_{4} \ddot{W}_{m} \\
& W_{m}^{\prime \prime \prime \prime}=c_{9} U_{m}^{\prime}+c_{10} V_{m}+c_{11} W_{m}+c_{12} W_{m}^{\prime \prime}+b_{5} \ddot{U}_{m}^{\prime}+b_{6} \ddot{V}_{m} \\
& +b_{7} \ddot{W}_{m}+b_{8} \ddot{W}_{m}^{\prime \prime}+a_{0} f_{m} \tag{17}
\end{align*}
$$

where a prime and dot on a quantity denote the derivative with respect to x_{1} and time t, respectively. The coefficients in Eqs. (15), (16) and (17) are presented in Appendix A.

In order to reduce the system of Eqs. (15), (16) and (17) to a state form, the components of the state vector $\left\{\mathrm{y}\left(\mathrm{x}_{1}, \mathrm{t}\right)\right\}$ associated with each theory are defined as

HSDT

$$
\begin{align*}
& \mathrm{y}_{1 \mathrm{~m}}=\mathrm{W}_{\mathrm{m}}, \mathrm{y}_{2 \mathrm{~m}}=\mathrm{W}_{\mathrm{m}}{ }^{\prime}, \mathrm{y}_{3 \mathrm{~m}}=\mathrm{W}_{\mathrm{m}}{ }^{\prime}, \mathrm{y}_{4 \mathrm{~m}}=\mathrm{U}_{\mathrm{m}}, \mathrm{y}_{5 \mathrm{~m}}=\mathrm{V}_{\mathrm{m}}, \mathrm{y}_{6 \mathrm{~m}}=\Phi_{1 \mathrm{~m}} \\
& \mathrm{y}_{7 \mathrm{~m}}=\Phi_{2 \mathrm{~m}}, \mathrm{y}_{8 \mathrm{~m}}=\mathrm{W}_{\mathrm{m}}^{\prime \prime}{ }^{\prime \prime}, \mathrm{y}_{9 \mathrm{~m}}=\mathrm{U}_{\mathrm{m}}{ }^{\prime}, \mathrm{y}_{10 \mathrm{~m}}=\mathrm{V}_{\mathrm{m}}{ }^{\prime}, \mathrm{y}_{11 \mathrm{~m}}=\Phi_{1 \mathrm{~m}}{ }^{\prime}, \mathrm{y}_{12 \mathrm{~m}}=\Phi_{2 \mathrm{~m}}{ }^{\prime} \tag{18}
\end{align*}
$$

FSDT

$$
\begin{align*}
& \mathrm{y}_{1 \mathrm{~m}}=\mathrm{W}_{\mathrm{m}}, \mathrm{y}_{2 \mathrm{~m}}=\mathrm{U}_{\mathrm{m}}, \mathrm{y}_{3 \mathrm{~m}}=\mathrm{V}_{\mathrm{m}}, \mathrm{y}_{4 \mathrm{~m}}=\Phi_{1 \mathrm{~m}}, \mathrm{y}_{5 \mathrm{~m}}=\Phi_{2 \mathrm{~m}} \\
& \mathrm{y}_{6 \mathrm{~m}}=\mathrm{W}_{\mathrm{m}}{ }^{\prime}, \mathrm{y}_{7 \mathrm{~m}}=\mathrm{U}_{\mathrm{m}}{ }^{\prime}, \mathrm{y}_{8 \mathrm{~m}}=\mathrm{V}_{\mathrm{m}}{ }^{\prime}, \mathrm{y}_{9 \mathrm{~m}}=\Phi_{1 \mathrm{~m}}{ }^{\prime}, \mathrm{y}_{10 \mathrm{~m}}=\Phi_{2 \mathrm{~m}}{ }^{\prime} \tag{19}
\end{align*}
$$

CST

$$
\begin{align*}
& y_{1 m}=W_{m}, y_{2 m}=W_{m}{ }^{\prime}, y_{3 m}=W_{m}{ }^{\prime \prime}, y_{4 m}=U_{m} \\
& y_{5 m}=V_{m}, y_{6 m}=W_{m}{ }^{\prime \prime}, y_{7 m}=U_{m}{ }^{\prime}, y_{8 m}=V_{m}{ }^{\prime} \tag{20}
\end{align*}
$$

Using (18), (19) and (20), the system of equations (15), (16) and (17) may be expressed in the form

$$
\begin{equation*}
\left\{y^{\prime}\right\}=[M]\{\ddot{y}\}+[K]\{y\}+\{r\} \tag{21}
\end{equation*}
$$

where the matrices [M] and [K] are defined in Appendix B for HSDT, FSDT and CST as $(12 \times 12),(10 \times 10)$ and (8×8) matrices, respectively. The elements of the load vector $\{r\}$ are

$$
\begin{gather*}
\{\mathbf{r}\}^{\mathrm{T}}=\left\{0,0,0,0,0,0,0, \mathrm{a}_{0} \mathrm{f}_{\mathrm{m}}, 0,0,0,0\right\} \text { for HSDT } \tag{22}\\
\{r\}^{\mathrm{T}}=\left\{0,0,0,0,0, \mathrm{a}_{0} \mathrm{f}_{\mathrm{m}}, 0,0,0,0\right\} \text { for FSDT } \tag{23}\\
\{\mathbf{r}\}^{\mathrm{T}}=\left\{0,0,0,0,0, \mathrm{a}_{0} \mathrm{f}_{\mathrm{m}}, 0,0\right\} \text { for CST } \tag{24}
\end{gather*}
$$

Free Vibration Problem

In the case of free vibration problem, the vector $\{y$ \} will be separated into time and spatial coordinates as :

$$
\begin{equation*}
\{\mathrm{y}\}=\left\{\mathrm{Y}_{\mathrm{m}}\left(\mathrm{x}_{1}\right)\right\} \mathrm{T}_{\mathrm{m}}(\mathrm{t}) \tag{25}
\end{equation*}
$$

To obtain the frequencies and the corresponding eigenfunctions, the generalized coordinates
$\mathrm{T}_{\mathrm{m}}(\mathrm{t})$ must satisfy

$$
\begin{equation*}
\ddot{\mathrm{T}}_{\mathrm{m}}+\omega_{\mathrm{m}}^{2} \mathrm{~T}_{\mathrm{m}}=0 \tag{26}
\end{equation*}
$$

and the eigenfunctions $\left\{\mathrm{Y}_{\mathrm{m}}\right\}$ will fulfil the following equation

$$
\begin{equation*}
\left\{\mathrm{Y}^{\prime}\right\}=[\mathrm{A}]\{\mathrm{Y}\} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
[A]=[K]-\omega_{\mathrm{m}}^{2}[\mathbf{M}] \tag{28}
\end{equation*}
$$

ω_{m} is the natural frequency corresponding to the mth mode. There are infinite frequencies for each value of m and the dynamic response is governed mainly by the fundamental frequency of each mode.

The solution to Eq. (27) is given by:

$$
\begin{equation*}
\left\{\mathrm{Y}\left(\mathrm{x}_{1}\right)\right\}=[\mathrm{D}]\left[\eta\left(\mathrm{x}_{1}\right)\right]\{1\} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\{1\}=[D]^{-1}\{k\} \tag{30}
\end{equation*}
$$

and

$$
\left[\eta\left(\mathrm{x}_{1}\right)\right]=\left[\begin{array}{cccc}
\mathrm{e}^{\lambda_{1} \times \mathrm{x}_{1}} & & & \underline{0} \tag{31}\\
& \vdots & & \\
& & \vdots & \\
\underline{0} & & \mathrm{e}^{\lambda_{\mathrm{n}} \mathrm{x}_{1}}
\end{array}\right]
$$

where $\mathrm{n}=12$ for HSDT, $\mathrm{n}=10$ for FSDT and $\mathrm{n}=8$ for CST, and λ_{i} are the distinct eigen values of the matrix [A] while [D] denotes the matrix of eigen vectors of [A]. Substitution of (29) into the boundary conditions associated with the edges $x_{1}= \pm a / 2$ results in a set of homogeneous algebraic equations of the form

$$
\begin{equation*}
[B][D]^{-1}\{k]=\{0\} \tag{32}
\end{equation*}
$$

For nontrivial solution of Eq. (32), the determinant should be zero

$$
\begin{equation*}
|B| /|D|=0 \tag{33}
\end{equation*}
$$

Equations (33) and (29) give the eigen frequencies and the associated eigen functions, respectively. The boundary conditions for simply supported (S), clamped (C) and free (F) at the edges $\mathrm{x}_{1}= \pm \mathrm{a} / 2$ for the three theories are:

HSDT

$$
\begin{align*}
& S: v=w=\phi_{2}=N_{1}=M_{1}=P_{1}=0 \\
& C: u=v=w=\phi_{1}=\phi_{2}=\frac{\partial w}{\partial x_{1}}=0 \\
& F: N_{1}=M_{1}=P_{1}=N_{6}=M_{6}-n_{2} P_{6}=Q_{1}-n_{1} K_{1}+n_{2}\left(\frac{\partial P_{1}}{\partial \mathbf{x}_{1}}+\frac{\partial P_{6}}{\partial x_{2}}\right)=0 \tag{34}
\end{align*}
$$

FSDT

$$
\begin{align*}
& S: v=w=\phi_{2}=N_{1}=M_{1}=0 \\
& C: u=v=w=\phi_{1}=\phi_{2}=0 \\
& F: N_{1}=M_{1}=Q_{1}=N_{6}=M_{6}=0 \tag{35}
\end{align*}
$$

CST

$$
\begin{align*}
& S: v=w=N_{1}=M_{1}=0 \\
& C: u=v=w=\frac{\partial w}{\partial x_{1}}=0 \\
& F: N_{1}=M_{1}=N_{6}+\frac{1}{R_{2}} M_{6}=\frac{\partial M_{1}}{\partial \mathrm{x}_{1}}+2 \frac{\partial M_{6}}{\partial \mathrm{x}_{2}}=0 \tag{36}
\end{align*}
$$

Adjoint Problem

Equation (21) is not a self-adjoint equation and the eigenfunctions do not form an orthogonal set, therefore, we must obtain the eigenfunction of the adjoint of Eq. (27) in order to decouple Eq. (21). Nayfeh in his book [25] showed that the adjoint of Eq. (27) is:

$$
\begin{equation*}
\left\{Z^{\prime}\right\}=-[A]^{T}\{Z\} \tag{37}
\end{equation*}
$$

with the following associated boundary conditions

$$
\begin{equation*}
\{Z\}^{\mathrm{T}}\{\mathrm{Y}\}{\underset{-a / 2}{\mathrm{a} / 2}}_{\mid}=0 \tag{38}
\end{equation*}
$$

According to Eq. (38), the following boundary conditions will be defined at the edges $x_{1}= \pm \mathrm{a} / 2$:

HSDT

$$
\begin{align*}
& \mathrm{S}: \mathrm{Z}_{2}=\mathrm{Z}_{4}=\mathrm{Z}_{6}=\mathrm{Z}_{8}=\mathrm{Z}_{10}=\mathrm{Z}_{12}=0 \\
& \mathrm{C}: \mathrm{Z}_{3}=\mathrm{Z}_{8}=\mathrm{Z}_{9}=\mathrm{Z}_{10}=\mathrm{Z}_{11}=\mathrm{Z}_{12}=0 \\
& \mathrm{~F}: \mathrm{d}_{1} \mathrm{Z}_{1}+\mathrm{d}_{4} \mathrm{Z}_{3}+\mathrm{d}_{7} \mathrm{Z}_{5}+\mathrm{Z}_{7}=0 \\
& \mathrm{~d}_{2} \mathrm{Z}_{1}+\mathrm{d}_{5} \mathrm{Z}_{3}+\mathrm{d}_{8} \mathrm{Z}_{5}+\mathrm{Z}_{9}=0 \\
& \mathrm{~d}_{3} \mathrm{Z}_{1}+\mathrm{d}_{6} \mathrm{Z}_{3}+\mathrm{d}_{9} \mathrm{Z}_{5}+\mathrm{Z}_{11}=0 \\
& \mathrm{~d}_{10} \mathrm{Z}_{2}+\mathrm{d}_{13} \mathrm{Z}_{4}+\mathrm{d}_{16} \mathrm{Z}_{6}+\mathrm{Z}_{8}=0 \\
& \mathrm{~d}_{11} \mathrm{Z}_{2}+\mathrm{d}_{14} \mathrm{Z}_{4}+\mathrm{d}_{17} \mathrm{Z}_{6}+\mathrm{Z}_{10}=0 \\
& \mathrm{~d}_{12} \mathrm{Z}_{2}+\mathrm{d}_{15} \mathrm{Z}_{4}+\mathrm{d}_{18} \mathrm{Z}_{6}+\mathrm{Z}_{12}=0 \tag{39}
\end{align*}
$$

FSDT

$$
\begin{align*}
& S: Z_{2}=Z_{4}=Z_{6}=Z_{8}=Z_{10}=0 \\
& C: Z_{6}=Z_{7}=Z_{8}=Z_{9}=Z_{10}=0 \\
& F: d_{1} Z_{7}+d_{4} Z_{9}+Z_{1}=0 \\
& d_{2} Z_{7}+d_{5} Z_{9}+Z_{3}=0 \\
& d_{3} Z_{7}+d_{6} Z_{9}+Z_{5}=0 \\
& Z_{2}-\beta Z_{8}=0 \\
& Z_{4}-Z_{6}-\beta Z_{10}=0 \tag{40}
\end{align*}
$$

CST

$$
\begin{align*}
& S: Z_{2}=Z_{4}=Z_{6}=Z_{8}=0 \\
& C: Z_{3}=Z_{6}=Z_{7}=Z_{8}=0 \\
& F: d_{1} Z_{1}+d_{3} Z_{3}+Z_{5}=0 \\
& d_{2} Z_{1}+d_{4} Z_{3}+Z_{7}=0 \\
& d_{5} Z_{2}+d_{7} Z_{4}+Z_{6}=0 \\
& d_{6} Z_{2}+d_{8} Z_{4}+Z_{8}=0 \tag{41}
\end{align*}
$$

The constants $\left(\mathrm{d}_{\mathrm{i}}\right)$ in equations (39), (40) and (41) are presented in Appendix C.
A formal solution of equation (37) is given by

$$
\begin{equation*}
\{Z\}=[C]\left[\xi\left(x_{1}\right)\right]\{n\} \tag{42}
\end{equation*}
$$

$$
\left[\xi\left(x_{1}\right)\right]=\left[\begin{array}{rrrr}
\mathrm{e}^{-\lambda_{1} \mathrm{x}_{1}} & & & \underline{0} \tag{43}\\
& \vdots & & \\
& & \vdots & \\
\underline{0} & & \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{x}_{1}}
\end{array}\right]
$$

where $[C]$ denotes the matrix of eigenvectors of $-[A]^{T}$.

Substitution of Eq. (42) into the corresponding boundary conditions defined in Eqs. (39-41) for the three theories at the edges $\mathrm{x}_{1}= \pm \mathrm{a} / 2$ results a homogeneous algebraic equations of the form

$$
\begin{equation*}
[E]\{n\}=0 \tag{44}
\end{equation*}
$$

we have to solve for the eigenvector $\{\mathrm{n}\}$ corresponding to each frequency ω.

Dynamic Response

Making use of the following biorthogonality conditions of the natural modes with respect to the eigenfunctions $\left\{\mathrm{Y}_{\mathrm{m}}\right\}$ and $\left\{\mathrm{Z}_{\mathrm{n}}\right\}$,

$$
\begin{gather*}
-\int_{-a / 2}^{a / 2}\left\{Z_{n}\right\}^{T}[M]\left\{Y_{m}\right\} d x_{1}=M_{m} \delta_{m n} \tag{45}\\
\left.\int_{-a / 2}^{a / 2}\left\{Z_{n}\right\}^{T}\left(\left\{Y_{m}\right\}\right\}-[K]\left\{Y_{m}\right\}\right) d x_{1}=\omega_{m}^{2} M_{m} \delta_{m n} \tag{46}
\end{gather*}
$$

and substituting Eq. (25) in Eq. (21) and left multiplication by the adjoint eigenfunction $\left\{Z_{n}\right\}^{\mathrm{T}}$ and integrate over the domain, we obtain

$$
\begin{equation*}
\ddot{T}_{m}(t)+\omega_{m}^{2} T_{m}(t)=\frac{1}{M_{m}} \int_{-a / 2}^{a / 2}\left\{Z_{m}\right\}^{T}\left\{r_{m}\right\} d x_{1} \tag{47}
\end{equation*}
$$

For zero initial conditions, the state vector $\{y\}$ will be expressed as

$$
\begin{equation*}
\left\{y_{m}\left(x_{1}, t\right)\right\}=\frac{1}{M_{m}}\left\{Y_{m}\left(x_{1}\right)\right\} \int_{0}^{t} h_{m}(t-\tau) \int_{-a / 2}^{a / 2}\left\{Z_{m}\right\}^{T}\left\{r_{m}(\xi, \tau)\right\} d \xi d \tau \tag{48}
\end{equation*}
$$

where $h_{m}(t-\tau)$ is the impulse response function. To obtain the generalized displacements, we use Eqs. (18), (19), (20) and (48) in conjunction with Eq. (13).

Numerical Results and Discussion

The numerical applications are carried out for cross-ply spherical shallow shells whose geometrical and material properties are the same for all layers. The following material properties of a lamina in its principal coordinates are used:

$$
\mathrm{E}_{2}=1 \times 10^{6} \mathrm{psi}, \mathrm{E}_{1}=25 \mathrm{E}_{2}, \mathrm{G}_{12}=\mathrm{G}_{13}=0.5 \mathrm{E}_{2}, \mathrm{G}_{23}=0.2 \mathrm{E}_{2}, v_{I 2}=0.25
$$

The transverse deflection presented in the figures is evaluated at $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \zeta\right)=(0, \mathrm{~b} / 2, \zeta)$. The stresses are nondimensionalized as follows:

$$
\begin{gathered}
\overline{\sigma_{2}}=\sigma_{2}(0, \mathrm{~b} / 2, \mathrm{~h} / 2) / \mathrm{q}_{0} \\
\overline{\sigma_{4}}=\sigma_{4}(0,0,0) / \mathrm{q}_{0}
\end{gathered}
$$

In all calculations, unless otherwise stated, the following parameters are used (see Fig. 1)

$$
\begin{gathered}
\mathrm{a}=\mathrm{b}=20 \mathrm{in}, \mathrm{~h}=2 \mathrm{in}, \mathrm{R}_{1}=\mathrm{R}_{2}=5 \mathrm{a}, \\
\mathrm{q}_{0}=500 \mathrm{psi}, \mathrm{t}_{1}=0.003 \mathrm{sec}, \rho=0.00012 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{4}
\end{gathered}
$$

In all cases sinusoidal distribution of loading in spatial domain and sine pulse in time domain is used, $\mathrm{q}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{t}\right)=\mathrm{q}_{0} \cos \left(\pi_{\mathrm{x}_{1}} / \mathrm{a}\right) \sin \left(\pi_{\mathrm{x}_{2}} / \mathrm{b}\right) \mathrm{F}(\mathrm{t})$, where

$$
\mathrm{F}(\mathrm{t})=\left\{\begin{array}{rr}
\sin \left(\frac{\pi \mathrm{t}}{\mathrm{t}_{1}}\right) & 0 \leq \mathrm{t} \leq \mathrm{t}_{1} \\
0 & \mathrm{t}>\mathrm{t}_{1}
\end{array}\right\}
$$

Zero initial conditions are assumed and for the first-order theory (FSDT), the shear correction coefficients are taken to be $\mathrm{K}_{44}{ }^{2}=\mathrm{K}_{55}{ }^{2}=5 / 6$. For the explanation of S, C, and F in the figures, for example, SSFC means : the shell is simply supported (SS) at $x_{2}=0$ and x_{2} $=\mathrm{b}$, free (F) at $\mathrm{x}_{1}=\mathrm{a} / 2$ and clamped (C) at $\mathrm{x}_{1}=-\mathrm{a} / 2$.

The effect of shallowness of the shell on the center deflection of antisymmetric and symmetric cross-ply spherical caps are displaced in Fig. 4 and Fig. 5 respectively for various boundary conditions. All the results are obtained using the third-order theory. It is clear that the plate is relatively flexible when compared to the shell.

Fig. 4. Effect of shallowness of the shell on the center deflection of antisymmetric cross-ply spherical caps for various boundary conditions (a) SSSS, SSCS and SSCC. (b) SSFF, SSFS and SSFC.

Fig. 5. Effect of shallowness of the shell on the center deflection of symmetric cross-ply spherical caps for various boundary conditions (a) SSSS, SSCS and SSCC. (b) SSFF, SSFS and SSFC.

(a)

(b)

Fit 6. Normal stress (σ_{2}) of two-layered spherical shells for various boundary conditions (a) SSSS, SSCS and SSCC. (b) SSFF, SSFS and SSFC.

Fig. 7. Transverse shear stress ($\overline{\sigma_{4}}$) of three-layered spherical shells for various boundary conditions (a) SSSS, SSCS and SSCC. (b) SSFF, SSFS and SSFC.

The variation of the normal stress $\bar{\sigma}_{2}$ and the transverse shear stress $\bar{\sigma}_{4}$ with time are presented in Fig. 6 and Fig. 7 respectively. The normal stress $\bar{\sigma}_{2}$ obtained using the thirdorder and first-order theories are close and differ from the classical theory for all boundary conditions. Unlike the normal stress, the transverse shear stress $\bar{\sigma}_{4}$ predicted by the firstorder theory differs significantly from that predicted by the third-order theory for all boundary conditions.

Conclusions

A generalized modal analysis approach is presented for forced vibration analysis of .. cross-ply laminated shallow shells. The equations of motion of the classical, first- and third-order theories are converted into a single-order system of equations by using state variables. The biorthogonality conditions of principal modes of the original and adjoint eigenfunctions are used to decouple the state space equations. An approach to utilize these modal quantities to obtain the forced response of shallow shells subjected to arbitrary loads is presented.

The numerical results for the deflection and stress responses are presented for shells with several different boundary conditions. To demonstrate the effect of shear deformation, the numerical results for the normal stress of antisymmetric cross-ply shells obtained by the third- and first- order theories are compared with the results obtained by the classical shell theory. It is noted that the first- and third- order theories seem to give very close results different than those of the classical theory because the classical theory ignores the effect of shear deformation. The normal stresses of shells with more end constraints (such as SSCC and SSCS shells) are seen to be more affected by the shear deformation than the shells with less end constraints (such as SSSS, SSFF, SSFS, SSFC) shells. As expected, difference is observed in the transverse shear stress calculated by the third-order and first-order theory because the third-order theory accounts for a layer-wise parabolic distribution of transverse shear stress whereas the first-order theory accounts for layer-wise constant states of transverse shear stress.

References

[1] Naghdi, P.M. "A Survey of Recent Progress in the Theory of Elastic Shells". Applied Mechanics Reviews, 9 (1956), 365-368.
[2] Ambartsumyan, S. A. "Theory of Anisotropic Shells". NASA TTF-118, 1964.
[3] Zukas, J. A. and Vinson, J. R. "Laminated Transversely Isotropic Cylindrical Shells". Journal of Applied Mechanics, 38 (1971), 400-407.
[4] Dong, S.B. and Tso, F.K.W. "On a Laminated Orthotropic shell Theory including Transverse Shear Deformation". Journal of Applied Mechanics, 39 (1972), 1091-1096.
[5] Reddy, J.N. and Liu, C.F. "A Higher Order Shear Deformation Theory of Laminated Elastic Shells". International Journal of Engineering Science, 23 (1985), 319-330.
[6] Whitney, J.M. and Sun, C.T. "A Higher Order Theory for Extensional Motion of Laminated Anisotropic Shells and Plates". Journal of Sound and Vibration, 30 (1973), 85-97.
[7] Whitney, J.M. and Sun, C.T. "A Refined Theory for Laminated Anisotropic Cylindrical Shells". Journal of Applied Mechanics, 41 (1974), 471-476.
[8] Dennis, S.T. and Palazotto, A.N. "Laminated Shells in Cylindrical Bending, Two-dimensional Approach vs Exact". AIAA Journal, 29 (1991), 647-650.
[9] Noor, A.K. and Burton, W.S. "Assessment of Computational Models for Multilayered Composite Shells". Applied Mechanics Reviews, 43 (1990), 67-97.
[10] Reissner, E. "On a Certain Mixed Variational Theorem and on Laminated Elastic Shell Theory". Refined Dynamic Theory of Beams, Plates and Shells, Springer-Verlag, Berlin, Germany, (1987), 17-27.
[11] Jing, H.S. and Tzeng, K.G. "Refined Shear Deformation Theory of Laminated Shells". AlAA Journal, 31 (1993), 765-773.
[12] Sun, C.T. and Whitney, J.M. "Forced Vibrations of Laminated Composite Plates in Cylindrical Bending". J. Acoust. Soc. Am., 55 (1974), 1003-1008.
[13] Sun, C.T. and Whitney, J.M. "Dynamic Response of Laminated Composite Plates under Initial Stress". AIAA Journal, 14 (1976), 268-270.
[14] Whitney, J.M. and Sun, C.T. "Transient Response of Laminated Composite Plates Subjected to Transverse Dynamic Loading". J. Acoust. Soc. Am., 61 (1977), 101-104.
[15] Dobyns, A.L. "Analysis of Simply-supported Orthotropic Plates Subject to Static and Dynamic Loads". AlAA Journal, 19 (1981), 642-650.
[16] Khdeir, A.A. and Reddy, J.N. "On the Forced Motions of Antisymmetric Cross-ply Laminated Plates". International Journal of Mechanical Sciences, 31 (1989), 499-510.
[17] Reddy, J.N. and Khdeir, A.A. "Dynamic Response of Cross-ply Laminated Shallow Shells According to a Refined Shear Deformation Theory". J. Acoust. Soc. Am. 85 (1989), 2423-2431.
[18] Khdeir, A.A. and Reddy, J.N. "Dynamic Response of Antisymmetric Angle-ply Laminated Plates Subjected to Arbitrary Loading". Journal of Sound and Vibration, 126 (1988), 437-445.
[19] Khdeir, A.A., Reddy, J.N. and Frederick, D. "On the Transient Response of Cross-ply Laminated Circular Cylindrical Shells". International Journal of Impact Engineering, 9 (1990), 475-484.
[20] Khdeir, A.A. "Dynamic Response of Antisymmetric Cross-ply Laminated Composite Beams with Arbitrary Boundary Conditions". International Journal of Engineering Science, 34 (1996), 9-19.
[21] Khdeir, A.A. "Forced Vibration of Antisymmetric Angle-ply Laminated Plates with Various Boundary Conditions". Journal of Sound and Vibration, 188 (1995), 257-267.
[22] Khdeir, A.A. "Dynamic Response of Cross-ply Laminated Circular Cylindrical Shells with Various Boundary Conditions". Acta Mechanica, 112 (1995), 117-134.
[23] Khdeir, A.A. "Transient Response of Refined Cross-ply Laminated Plates for Various Boundary Conditions". J. Acoust. Soc. Am., 97 (1995), 1664-1669.
[24] Khdeir, A.A. "Dynamic Response of Cross-ply Shallow Shells with Levy-type Boundary Conditions". AIAA Journal, 32 (1994), 2484-2486.
[25] Nayfeh, A.H. Introduction to Perturbation Techniques, New York: John Wiley, 1981.

Appendix A

The coefficients appearing in Eq. (15) are :

$$
\begin{aligned}
& c_{1}=\left(e_{7} e_{30}-e_{3} e_{34}\right) / e_{0}, c_{2}=\left(e_{2} e_{30}-e_{3} e_{29}\right) / e_{0}, c_{3}=\left(e_{6} e_{30}-e_{3} e_{33}\right) / e_{0}, \\
& c_{4}=\left(e_{5} e_{30}-e_{3} e_{32}\right) / e_{0}, c_{5}=\left(e_{8} e_{30}-e_{3} e_{35}\right) / e_{0}, c_{6}=\left(e_{4} e_{30}-e_{3} e_{31}\right) / e_{0}, \\
& c_{7}=\left(e_{9} e_{39}-\mathrm{e}_{12} \mathrm{e}_{36}\right) / c_{0}, c_{8}=\left(e_{14} \mathrm{e}_{39}-\mathrm{e}_{12} \mathrm{e}_{41}\right) / c_{0}, c_{9}=\left(\mathrm{e}_{16} \mathrm{e}_{39}-\mathrm{e}_{12} \mathrm{e}_{43}\right) / \mathrm{c}_{0} \text {, } \\
& c_{10}=\left(e_{13} e_{39}-e_{12} e_{40}\right) / c_{0}, c_{11}=\left(e_{11} e_{39}-e_{12} e_{38}\right) / c_{0}, c_{12}=\left(e_{15} e_{39}-e_{12} e_{42}\right) / c_{0}, \\
& c_{19}=\left(e_{1} e_{34}-e_{7} e_{28}\right) / e_{0}, c_{20}=\left(e_{1} e_{29}-e_{2} e_{28}\right) / e_{0}, c_{21}=\left(e_{1} e_{33}-e_{6} e_{28}\right) / e_{0}, \\
& c_{22}=\left(e_{1} e_{32}-e_{5} e_{28}\right) / e_{0}, c_{23}=\left(e_{1} e_{35}-e_{8} e_{28}\right) / e_{0}, c_{24}=\left(e_{1} e_{31}-e_{4} e_{28}\right) / e_{0}, \\
& c_{25}=\left(e_{10} e_{36}-e_{9} e_{37}\right) / c_{0}, c_{26}=\left(e_{10} e_{41}-e_{14} e_{37}\right) / c_{0}, c_{27}=\left(e_{10} \mathrm{e}_{43}-\mathrm{e}_{16} \mathrm{e}_{37}\right) / c_{0}, \\
& c_{28}=\left(e_{10} \mathrm{e}_{40}-\mathrm{e}_{13} \mathrm{e}_{37}\right) / c_{0}, \mathrm{c}_{29}=\left(\mathrm{e}_{10} \mathrm{e}_{38}-\mathrm{e}_{11} \mathrm{e}_{37}\right) / \mathrm{c}_{0}, \mathrm{c}_{30}=\left(\mathrm{e}_{10} \mathrm{e}_{42}-\mathrm{e}_{15} \mathrm{e}_{37}\right) / \mathrm{c}_{0}, \\
& c_{13}=a_{0}\left(c_{1} e_{21}+c_{7} a_{1}+c_{25} a_{2}+c_{19} e_{23}+e_{26}\right), c_{14}=a_{0}\left(c_{8} a_{1}+c_{26} a_{2}+e_{27}\right), \\
& c_{15}=a_{0}\left(c_{9} a_{1}+c_{27} a_{2}+e_{20}\right), c_{16}=a_{0}\left(c_{10} a_{1}+c_{28} a_{2}+c_{3} e_{21}+c_{21} e_{23}+e_{18}\right), \\
& c_{17}=a_{0}\left(c_{11} a_{1}+c_{29} a_{2}+c_{5} e_{21}+c_{23} e_{23}+e_{17}\right), c_{18}=a_{0}\left(c_{12} a_{1}+c_{30} a_{2}+e_{19}\right), \\
& b_{1}=\left(e_{3} m_{15}-e_{30} m_{1}\right) / e_{0}, b_{2}=\left(e_{3} m_{14}-e_{30} m_{3}\right) / e_{0}, b_{3}=\left(e_{3} m_{13}-e_{30} m_{2}\right) / e_{0} \text {, } \\
& b_{4}=\left(e_{12} \mathrm{~m}_{18}-\mathrm{e}_{39} \mathrm{~m}_{4}\right) / \mathrm{c}_{0}, \mathrm{~b}_{5}=\left(\mathrm{e}_{12} \mathrm{~m}_{17}-\mathrm{e}_{39} \mathrm{~m}_{6}\right) / \mathrm{c}_{0}, \mathrm{~b}_{6}=\left(\mathrm{e}_{12} \mathrm{~m}_{16}-\mathrm{e}_{39} \mathrm{~m}_{5}\right) / \mathrm{c}_{0} \text {, } \\
& b_{13}=\left(e_{28} m_{1}-e_{1} m_{15}\right) / e_{0}, b_{14}=\left(e_{28} m_{3}-e_{1} m_{14}\right) / e_{0}, b_{15}=\left(e_{28} m_{2}-e_{1} m_{13}\right) / e_{0}, \\
& b_{16}=\left(e_{37} \mathrm{~m}_{4}-e_{10} \mathrm{~m}_{18}\right) / c_{0}, b_{17}=\left(e_{37} \mathrm{~m}_{6}-\mathrm{e}_{10} \mathrm{~m}_{17}\right) / c_{0}, \mathrm{~b}_{18}=\left(\mathrm{e}_{37} \mathrm{~m}_{5}-\mathrm{e}_{10} \mathrm{~m}_{16}\right) / c_{0} \text {, } \\
& b_{7}=a_{0}\left(e_{21} b_{1}+e_{23} b_{13}-m_{11}\right), b_{8}=a_{0}\left(b_{4} a_{1}+b_{16} a_{2}-m_{12}\right), b_{9}=a_{0}\left(b_{5} a_{1}+b_{17} a_{2}-m_{7}\right), \\
& b_{10}=a_{0}\left(e_{21} b_{2}+e_{23} b_{14}-m_{8}\right), b_{11}=a_{0}\left(e_{21} b_{3}+e_{23} b_{15}-m 9\right) \text {, } \\
& b_{12}=a_{0}\left(b_{6} a_{1}+b_{18} a_{2}-m_{10}\right), e_{0}=e_{3} e_{28}-e_{1} e_{30}, c_{0}=e_{12} e_{37}-e_{10} e_{39}, \\
& a_{0}=-1 /\left(c_{4} e_{21}+c_{22} e_{23}+e_{25}\right), a_{1}=c_{2} e_{21}+c_{20} e_{23}+e_{22}, a_{2}=c_{6} e_{21}+c_{24} e_{23}+e_{24},
\end{aligned}
$$

where

$$
\begin{aligned}
& e_{1}=A_{11}, e_{2}=-\beta\left(A_{12}+A_{66}\right), e_{3}=B_{11}-n_{2} E_{11} \text {, } \\
& \mathrm{e}_{4}=\beta\left[\mathrm{n}_{2}\left(\mathrm{E}_{12}+\mathrm{E}_{66}\right)-\mathrm{B}_{12}-\mathrm{B}_{66}\right], \mathrm{e}_{5}=-\mathrm{n}_{2} \mathrm{E}_{11} \text {, } \\
& e_{6}=n_{2}\left[\beta^{2}\left(E_{12}+2 E_{66}\right)\right]+A_{11} / R_{1}+A_{12} / R_{2}, e_{7}=-\beta^{2} A_{66} \text {, } \\
& e_{8}=\beta^{2}\left(n_{2} E_{66}-B_{66}\right), e_{9}=-e_{2}, e_{10}=A_{66} \text {, } \\
& e_{11}=-e_{4}, e_{12}=B_{66}-n_{2} E_{66}, e_{13}=-\beta_{n_{2}}\left(E_{12}+2 E_{66}\right), e_{14}=-\beta^{2} A_{22} \text {, } \\
& \mathrm{e}_{15}=\beta^{2}\left(\mathrm{n}_{2} \mathrm{E}_{22}-\mathrm{B}_{22}\right), \mathrm{e}_{16}={ }_{n_{2}} \beta^{3} \mathrm{E}_{22}+\beta\left(\mathrm{A}_{12} / \mathrm{R}_{1}+\mathrm{A}_{22} / \mathrm{R}_{2}\right) \text {, } \\
& \mathrm{e}_{17}=\mathrm{A}_{55}-\mathrm{n}_{1} \mathrm{D}_{55}-\mathrm{n}_{1}\left(\mathrm{D}_{55}-\mathrm{n}_{1} \mathrm{~F}_{55}\right)+ \\
& \mathrm{n}_{2} \beta^{2}\left[\mathrm{n}_{2}\left(\mathrm{H}_{12}+2 \mathrm{H}_{66}\right)-\left(\mathrm{F}_{12}+2 \mathrm{~F}_{66}\right)\right]-\left(\mathrm{B}_{11}-\mathrm{n}_{2} \mathrm{E}_{11}\right) / \mathrm{R}_{1}-\left(\mathrm{B}_{12}-\mathrm{n}_{2} \mathrm{E}_{12}\right) / \mathrm{R}_{2} \text {, } \\
& \mathrm{e}_{18}=\mathrm{A}_{55}-\mathrm{n}_{1} \mathrm{D}_{55}-\mathrm{n}_{1}\left(\mathrm{D}_{55}-\mathrm{n}_{1} \mathrm{~F}_{55}\right)+\mathrm{n}_{2}^{2} \beta^{2}\left[2 \mathrm{H}_{12}+4 \mathrm{H}_{66}\right] \\
& +2 \mathrm{n}_{2}\left(\mathrm{E}_{11} / \mathrm{R}_{1}+\mathrm{E}_{12} / \mathrm{R}_{2}\right) \text {, } \\
& \mathrm{e}_{19}=-\beta\left[\mathrm{A}_{44}-\mathrm{n}_{1} \mathrm{D}_{44}-\mathrm{n}_{1}\left(\mathrm{D}_{44}-\mathrm{n}_{1} \mathrm{~F}_{44}\right)\right]+\mathrm{n}_{2} \beta^{3}\left(\mathrm{~F}_{22}-\mathrm{n}_{2} \mathrm{H}_{22}\right) \\
& +\beta\left(\mathrm{B}_{12}-\mathrm{n}_{2} \mathrm{E}_{12}\right) / \mathrm{R}_{1}+\beta\left(\mathrm{B}_{22}-\mathrm{n}_{2} \mathrm{E}_{22}\right) / \mathrm{R}_{2} \text {, } \\
& e_{20}=-\beta^{2}\left[A_{44}-n_{1} D_{44}-n_{1}\left(D_{44}-n_{1} F_{44}\right)\right]-n_{2}^{2} \beta^{4} H_{22} \\
& -2 \mathrm{n}_{2} \beta^{2}\left(\mathrm{E}_{12} / \mathrm{R}_{1}+\mathrm{E}_{22} / \mathrm{R}_{2}\right)-\mathrm{A}_{11} / \mathrm{R}_{1}^{2}-2 \mathrm{~A}_{12} /\left(\mathrm{R}_{1} \mathrm{R}_{2}\right)-\mathrm{A}_{22} / \mathrm{R}_{2}^{2} \text {, } \\
& \mathrm{e}_{21}=-\mathrm{e}_{5}, \mathrm{e}_{22}=\mathrm{e}_{13}, \mathrm{e}_{23}=\mathrm{n}_{2}\left(\mathrm{~F}_{11}-\mathrm{n}_{2} \mathrm{H}_{11}\right) \text {, } \\
& \mathrm{e}_{24}=\beta_{\mathrm{n}_{2}}\left[\mathrm{n}_{2}\left(2 \mathrm{H}_{66}+\mathrm{H}_{12}\right)-\left(\mathrm{F}_{12}+2 \mathrm{~F}_{66}\right)\right], \mathrm{e}_{25}=-\mathrm{n}_{2}^{2} \mathrm{H}_{11}, \mathrm{e}_{26}=-\mathrm{e}_{6} \text {, } \\
& e_{27}=e_{16}, e_{28}=e_{3}, e_{29}=e_{4}, e_{30}=D_{11}-2 n_{2} F_{11}+n_{2}^{2} H_{11}, \\
& e_{31}=\beta\left[2_{n_{2}}\left(F_{12}+F_{66}\right)-n_{2}^{2}\left(H_{12}+H_{66}\right)-D_{12}-D_{66}\right], e_{32}=-e_{23}, e_{33}=-e_{17}, \\
& \mathrm{e}_{34}=\mathrm{e}_{8}, \mathrm{e}_{35}=\mathrm{n}_{1}\left(\mathrm{D}_{55}-\mathrm{n}_{1} \mathrm{~F}_{55}\right)-\left(\mathrm{A}_{55}-\mathrm{n}_{1} \mathrm{D}_{55}\right)+\beta^{2}\left[2 \mathrm{n}_{2} \mathrm{~F}_{66}-\mathrm{D}_{66}-\mathrm{n}_{2}^{2} \mathrm{H}_{66}\right] \text {, } \\
& e_{36}=-e_{4}, e_{37}=e_{12}, e_{38}=-e_{31}, e_{39}=D_{66}-2 n_{2} F_{66}+n_{2}^{2} H_{66}, e_{40}=e_{24}, e_{41}=e_{15}, \\
& e_{42}=n_{1}\left(D_{44}-n_{1} F_{44}\right)-\left(A_{44}-n_{1} D_{44}\right)+\beta^{2}\left[2 n_{2} F_{22}-D_{22}-n_{2}^{2} H_{22}\right], e_{43}=e_{19}, \\
& \mathrm{~m}_{1}=\overline{\mathrm{I}}_{1}, \mathrm{~m}_{2}=\overline{\mathrm{I}_{2}}, \mathrm{~m}_{3}=-\overline{\mathrm{I}}_{3}, \mathrm{~m}_{4}=\overline{\mathrm{I}}^{\prime}, \mathrm{m}_{5}=\overline{\mathrm{I}_{2}{ }^{\prime}}, \mathrm{m}_{6}=-\beta \overline{\mathrm{I}_{3}}{ }^{\prime}, \mathrm{m}_{7}=\mathrm{I}_{1}+\beta^{2} \mathrm{n}_{2}^{2} \mathrm{I}_{7}, \\
& \mathrm{~m}_{8}=-\mathrm{n}_{2}^{2} \mathrm{I}_{7}, \mathrm{~m}_{9}=\overline{\mathrm{I}_{5}}, \mathrm{~m}_{10}=-\beta \overline{\mathrm{I}_{5}}, \mathrm{~m}_{11}=-\mathrm{m}_{3}, \mathrm{~m}_{12}=\mathrm{m}_{6}, \mathrm{~m}_{13}=\overline{\mathrm{I}_{4}}, \mathrm{~m}_{14}=-\mathrm{m}_{9} \text {, } \\
& \mathrm{m}_{15}=\mathrm{m}_{2}, \mathrm{~m}_{16}=\mathrm{m}_{13}, \mathrm{~m}_{17}=\mathrm{m}_{10}, \mathrm{~m}_{18}=\mathrm{m}_{5},
\end{aligned}
$$

The coefficients appearing in Eq. (16) are:

$$
\begin{aligned}
& c_{1}=\left(e_{3} e_{21}-e_{5} e_{19}\right) / e_{0}, c_{2}=\left(e_{3} e_{18}-e_{2} e_{19}\right) / e_{0}, c_{3}=\left(e_{3} e_{23}-e_{19} e_{31}\right) / e_{0}, \\
& c_{4}=\left(e_{3} e_{22}-e_{6} e_{19}\right) / e_{0}, c_{5}=\left(e_{3} e_{20}-e_{4} e_{19}\right) / e_{0}, c_{6}=\left(e_{8} e_{27}-e_{10} e_{25}\right) / c_{0}, \\
& c_{7}=\left(e_{11} e_{27}-e_{10} e_{28}\right) / c_{0}, c_{8}=\left(e_{27} e_{32}-e_{10} e_{30}\right) / c_{0}, c_{9}=\left(e_{9} e_{27}-e_{10} e_{26}\right) / c_{0}, \\
& c_{10}=\left(e_{12} e_{27}-e_{10} e_{29}\right) / c_{0}, c_{11}=-e_{33} / e_{13}, c_{12}=-e_{34} / e_{13}, c_{13}=-e_{15} / e_{13}, \\
& c_{14}=-e_{14} / e_{13}, c_{15}=-e_{16} / e_{13}, c_{16}=\left(e_{5} e_{17}-e_{1} e_{21}\right) / e_{0}, c_{17}=\left(e_{2} e_{17}-e_{1} e_{18}\right) / e_{0}, \\
& c_{18}=\left(e_{17} e_{31}-e_{1} e_{23}\right) / e_{0}, c_{19}=\left(e_{6} e_{17}-e_{1} e_{22}\right) / e_{0}, c_{20}=\left(e_{4} e_{17}-e_{1} e_{20}\right) / e_{0}, \\
& c_{21}=\left(e_{7} e_{25}-e_{8} e_{24}\right) / c_{0}, c_{22}=\left(e_{7} e_{28}-e_{11} e_{24}\right) / c_{0}, c_{23}=\left(e_{7} e_{30}-e_{24} e_{32}\right) / c_{0}, \\
& c_{24}=\left(e_{7} e_{26}-e_{9} e_{24}\right) / c_{0}, c_{25}=\left(e_{7} e_{29}-e_{12} e_{24}\right) / c_{0}, b_{1}=\left(e_{19} I_{1}-e_{3} I_{2}\right) / e_{0}, \\
& b_{2}=\left(e_{19} I_{2}-e_{3} I_{3}\right) / e_{0}, b_{3}=\left(e_{10} I_{2}-e_{27} I_{1}\right) / c_{0}, b_{4}=\left(e_{10} I_{3}-e_{27} I_{2}\right) / c_{0}, \\
& b_{5}=I_{1} / e_{13}, b_{6}=\left(e_{1} I_{2}-e_{17} I_{1}\right) / e_{0}, b_{7}=\left(e_{1} I_{3}-e_{17} I_{2}\right) / e_{0}, b_{8}=\left(e_{24} I_{1}-e_{7} I_{2}\right) / c_{0}, \\
& b_{9}=\left(e_{24} I_{2}-e_{7} I_{3}\right) / c_{0}, e_{0}=e_{1} e_{19}-e_{3} e_{17}, c_{0}=e_{10} e_{24}-e_{7} e_{27}, a_{0}=-1 / e_{13} .
\end{aligned}
$$

where

$$
\begin{aligned}
& e_{1}=A_{11}, e_{2}=-\beta\left(A_{12}+A_{66}\right), e_{3}=B_{11}, e_{4}=-\beta\left(B_{12}+B_{66}\right), e_{5}=-\beta^{2} A_{66}, \\
& e_{6}=-\beta^{2} B_{66}, e_{7}=A_{66}, e_{8}=-e_{2}, e_{9}=-e_{4}, e_{10}=B_{66}, e_{11}=-\beta^{2} A_{22}, \\
& e_{12}=-\beta^{2} B_{22}, e_{13}=K_{55}^{2} A_{55}, e_{14}=K_{55}^{2} A_{55}-B_{11} / R_{1}-B_{12} / R_{2}, \\
& e_{15}=-\beta^{2} K_{44}^{2} A_{44}-A_{11} / R_{1}^{2}-2 A_{12} /\left(R_{1} R_{2}\right)-A_{22} / R_{2}^{2}, \\
& e_{16}=-\beta K_{44}^{2} A_{44}+\beta\left(B_{12} / R_{1}+B_{22} / R_{2}\right), e_{17}=e_{3}, e_{18}=e_{4}, \\
& e_{19}=D_{11}, e_{20}=-\beta\left(D_{12}+D_{66}\right), e_{21}=e_{6}, e_{22}=-\beta^{2} D_{66}-K_{55}^{2} A_{55}, \\
& e_{23}=-e_{14}, e_{24}=e_{10}, e_{25}=-e_{4}, e_{26}=-e_{20}, e_{27}=D_{66}, \\
& e_{28}=e_{12}, e_{29}=-\beta^{2} D_{22}-K_{44}^{2} A_{44}, e_{30}=e_{16}, e_{31}=A_{11} / R_{1}+A_{12} / R_{2}, \\
& e_{32}=\beta\left(A_{12} / R_{1}+A_{22} / R_{2}\right), e_{33}=-e_{31}, e_{34}=e_{32} .
\end{aligned}
$$

The coefficients appearing in Eq. (17) are:

$$
\begin{aligned}
& c_{1}=-e_{2} / e_{1}, c_{2}=-e_{3} / e_{1}, c_{3}=-e_{5} / e_{1}, c_{4}=-e_{4} / e_{1}, c_{5}=-e_{6} / e_{7}, \\
& c_{6}=-e_{8} / e_{7}, c_{7}=-e_{10} / e_{7}, c_{8}=-e_{9} / e_{7}, c_{9}=-e_{21} / e_{18}, c_{10}=-e_{22} / e_{18}, \\
& c_{11}=-e_{20} / e_{18}, c_{12}=-e_{19} / e_{18}, b_{1}=I_{1} / e_{1}, b_{2}=-I_{2} / e_{1}, \\
& b_{3}=I_{1} / e_{7}, b_{4}=-\beta I_{2} / e_{7}, b_{5}=-I_{4} e_{14} /\left(e_{1} e_{18}\right)-I_{2} / e_{18}, \\
& b_{6}=-I_{1} e_{16} /\left(e_{7} e_{18}\right)+I_{1} e_{3} e_{14} /\left(e_{1} e_{7} e_{18}\right)+\beta_{I_{2}} / e_{18}, \\
& b_{7}=-\left(I_{1}+\beta^{2} I_{3}\right) / e_{18}+\beta_{I_{2}} e_{16} /\left(e_{7} e_{18}\right)-\beta I_{2} e_{3} e_{14} /\left(e_{1} e_{7} e_{18}\right), \\
& b_{8}=I_{3} / e_{18}+I_{2} e_{14} /\left(e_{1} e_{18}\right), a_{0}=1 / e_{18} .
\end{aligned}
$$

where

$$
\begin{aligned}
& e_{1}=A_{11}, e_{2}=-\beta^{2} A_{66}, e_{3}=-\beta\left(A_{12}+A_{66}\right), e_{4}=-B_{11}, \\
& e_{5}=\beta^{2}\left(B_{12}+2 B_{66}\right)+A_{11} / R_{1}+A_{12} / R_{2}, e_{6}=-e_{3}, e_{7}=A_{66}, e_{8}=-\beta^{2} A_{22}, \\
& e_{9}=-\beta\left(B_{12}+2 B_{66}\right), e_{10}=\beta^{3} B_{22}+\beta\left(A_{12} / R_{1}+A_{22} / R_{2}\right), e_{11}=D_{11}, \\
& e_{12}=-2 \beta^{2}\left(D_{12}+2 D_{66}\right)-2\left(B_{11} / R_{1}+B_{12} / R_{2}\right), \\
& e_{13}=\beta^{4} D_{22}+A_{11} / R_{1}^{2}+2 A_{12} /\left(R_{1} R_{2}\right)+A_{22} / R_{2}^{2}+2 \beta^{2}\left(B_{12} / R_{1}+B_{22} / R_{2}\right), \\
& e_{14}=e_{4}, e_{15}=e_{5}, e_{16}=-e_{9}, e_{17}=-e_{10}, e_{18}=e_{11}-e_{4} e_{14} / e_{1}, \\
& e_{19}=e_{12}-e_{5} e_{14} / e_{1}-e_{9} e_{16} / e_{7}+e_{3} e_{9} e_{14} /\left(e_{1} e_{7}\right), \\
& e_{20}=e_{13}-e_{10} e_{16} / e_{7}+e_{3} e_{10} e_{14} /\left(e_{1} e_{7}\right), \\
& e_{21}=e_{15}-e_{2} e_{14} / e_{1}-e_{6} e_{16} / e_{7}+e_{3} e_{6} e_{14} /\left(e_{1} e_{7}\right), \\
& e_{22}=e_{17}-e_{8} e_{16} / e_{7}+e_{3} e_{8} e_{14} /\left(e_{1} e_{7}\right) .
\end{aligned}
$$

Appendix B

The matrices [K] and [M] in Eq. (21)
HSDT

$$
[\mathrm{K}]=\left[\begin{array}{rrrrrrrrrrrr}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
c_{15} & 0 & c_{16} & 0 & c_{14} & 0 & c_{18} & 0 & c_{13} & 0 & c_{17} & 0 \\
0 & c_{3} & 0 & c_{1} & 0 & c_{5} & 0 & c_{4} & 0 & c_{2} & 0 & c_{6} \\
c_{9} & 0 & c_{10} & 0 & c_{8} & 0 & c_{12} & 0 & c_{7} & 0 & c_{11} & 0 \\
0 & c_{21} & 0 & c_{19} & 0 & c_{23} & 0 & c_{22} & 0 & c_{20} & 0 & c_{24} \\
c_{27} & 0 & c_{28} & 0 & c_{26} & 0 & c_{30} & 0 & c_{25} & 0 & c_{29} & 0
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\mathrm{M}
\end{array}\right]=\left[\begin{array}{rrrrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
b_{9} & 0 & b_{10} & 0 & b_{8} & 0 & b_{12} & 0 & b_{7} & 0 & b_{11} & 0 \\
0 & b_{2} & 0 & b_{1} & 0 & b_{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
b_{5} & 0 & 0 & 0 & b_{4} & 0 & b_{6} & 0 & 0 & 0 & 0 & 0 \\
0 & b_{14} & 0 & b_{13} & 0 & b_{15} & 0 & 0 & 0 & 0 & 0 & 0 \\
b_{17} & 0 & 0 & 0 & b_{16} & 0 & b_{18} & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

FSDT

$$
[\mathrm{K}]=\left[\begin{array}{rrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
c_{13} & 0 & c_{12} & 0 & c_{15} & 0 & c_{11} & 0 & c_{14} & 0 \\
0 & c_{1} & 0 & c_{4} & 0 & c_{3} & 0 & c_{2} & 0 & c_{5} \\
c_{8} & 0 & c_{7} & 0 & c_{10} & 0 & c_{6} & 0 & c_{9} & 0 \\
0 & c_{16} & 0 & c_{19} & 0 & c_{18} & 0 & c_{17} & 0 & c_{20} \\
c_{23} & 0 & c_{22} & 0 & c_{25} & 0 & c_{21} & 0 & c_{24} & 0
\end{array}\right]
$$

$$
[\mathrm{M}]=\left[\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{~b}_{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{~b}_{1} & 0 & \mathrm{~b}_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{~b}_{3} & 0 & \mathrm{~b}_{4} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathrm{~b}_{6} & 0 & \mathrm{~b}_{7} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{~b}_{8} & 0 & \mathrm{~b}_{9} & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

CST

$$
[\mathrm{K}]=\left[\begin{array}{rrrrrrrr}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
c_{11} & 0 & c_{12} & 0 & c_{10} & 0 & c_{9} & 0 \\
0 & c_{3} & 0 & c_{1} & 0 & c_{4} & 0 & c_{2} \\
c_{7} & 0 & c_{8} & 0 & c_{6} & 0 & c_{5} & 0
\end{array}\right]
$$

$$
[\mathbf{M}]=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{~b}_{7} & 0 & \mathrm{~b}_{8} & 0 & \mathrm{~b}_{6} & 0 & \mathrm{~b}_{5} & 0 \\
0 & \mathrm{~b}_{2} & 0 & \mathrm{~b}_{1} & 0 & 0 & 0 & 0 \\
\mathrm{~b}_{4} & 0 & 0 & 0 & \mathrm{~b}_{3} & 0 & 0 & 0
\end{array}\right]
$$

Appendix C

The coefficients d_{i} appearing in Eq. (39) are:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
d_{1} & d_{2} & d_{3} \\
d_{4} & d_{5} & d_{6} \\
d_{7} & d_{8} & d_{9}
\end{array}\right]=-\left[\begin{array}{lll}
s_{3} & s_{4} & s_{2} \\
s_{9} & s_{10} & s_{8} \\
s_{15} & s_{16} & s_{14}
\end{array}\right]^{-1}\left[\begin{array}{lll}
\mathrm{s}_{6} & s_{1} & s_{5} \\
\mathrm{~s}_{12} & s_{7} & s_{11} \\
\mathrm{~s}_{18} & \mathrm{~s}_{13} & \mathrm{~s}_{17}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
d_{10} & d_{11} & d_{12} \\
d_{13} & d_{14} & d_{15} \\
d_{16} & d_{17} & d_{18}
\end{array}\right]=-\left[\begin{array}{lll}
s_{21} & s_{19} & s_{22} \\
s_{26} & s_{24} & s_{27} \\
s_{39} & s_{37} & s_{40}
\end{array}\right]^{-1}\left[\begin{array}{lll}
0 & s_{20} & s_{23} \\
0 & s_{25} & s_{28} \\
s_{42} & s_{38} & s_{41}
\end{array}\right]}
\end{aligned}
$$

where

$$
\begin{aligned}
& s_{1}=A_{11}, s_{2}=-\beta A_{12}, s_{3}=n_{2} \beta^{2} E_{12}+A_{11} / R_{1}+A_{12} / R_{2}, s_{4}=-n_{2} E_{11}, \\
& s_{5}=B_{11}-n_{2} E_{11}, s_{6}=\beta\left(n_{2} E_{12}-B_{12}\right), s_{7}=B_{11}, s_{8}=-\beta B_{12}, \\
& s_{9}=\beta_{n_{2}}^{2} F_{12}+B_{11} / R_{1}+B_{12} / R_{2}, s_{10}=-n_{2} F_{11}, \\
& s_{11}=D_{11}-n_{2} F_{11}, s_{12}=\beta\left(n_{2} F_{12}-D_{12}\right), s_{13}=E_{11}, s_{14}=-\beta E_{12}, \\
& s_{15}=n_{2} \beta^{2} H_{12}+E_{11} / R_{1}+E_{12} / R_{2}, s_{16}=-n_{2} H_{11}, s_{17}=F_{11}-n_{2} H_{11}, \\
& s_{18}=\beta\left(n_{2} H_{12}-F_{12}\right), s_{19}=\beta A_{66}, s_{20}=A_{66}, s_{21}=-2 \beta \beta_{2} E_{66}, \\
& s_{22}=\beta\left(B_{66}-n_{2} E_{66}\right), s_{23}=B_{66}-n_{2} E_{66}, s_{24}=s_{22}, s_{25}=s_{23}, \\
& s_{26}=2 \beta n_{2}\left(n_{2} H_{66}-F_{66}\right), s_{27}=\beta\left(D_{66}-2 n_{2} F_{66}+n_{2}^{2} H_{66}\right), \\
& s_{28}=s_{27} / \beta, s_{29}=A_{55}-n_{1} D_{55}-n_{1}\left(D_{55}-n_{1} F_{55}\right)+\beta_{n_{2}}^{2}\left(n_{2} H_{66}-F_{66}\right), \\
& s_{30}=A_{55}-n_{1} D_{55}-n_{1}\left(D_{55}-n_{1} F_{55}\right)+\beta^{2} n_{2}^{2}\left(H_{12}+2 H_{66}\right)+n_{2}\left(E_{11} / R_{1}+E_{12} / R_{2}\right), \\
& s_{31}=n_{2} E_{11}, s_{32}=-\beta_{n_{2}}\left(E_{12}+E_{66}\right), s_{33}=n_{2}\left(F_{11}-n_{2} H_{11}\right), \\
& s_{34}=\beta_{n_{2}}\left(n_{2} H_{12}+n_{2} H_{66}-F_{12}-F_{66}\right), s_{35}=-n_{2}^{2} H_{11}, s_{36}=-n_{2} \beta^{2} E_{66}, \\
& s_{37}=s_{31}\left(c_{1}-\omega_{m}^{2} b_{1}\right)+s_{33}\left(c_{19}-\omega_{m}^{2} b_{13}\right)+s_{36}, s_{38}=s_{31} c_{2}+s_{33} c_{20}+s_{32}, \\
& s_{39}=s_{30}+s_{31}\left(c_{3}-\omega_{m}^{2} b_{2}\right)+s_{33}\left(c_{21}-\omega_{m}^{2} b_{14}\right), \\
& s_{40}=s_{29}+s_{31}\left(c_{5}-\omega_{m}^{2} b_{3}\right)+s_{33}\left(c_{23}-\omega_{m}^{2} b_{15}\right), \\
& s_{41}=s_{31} c_{6}+s_{33} c_{24}+s_{34}, s_{42}=s_{31} c_{4}+s_{33} c_{22}+s_{35} .
\end{aligned}
$$

The coefficients d_{i} appearing in Eq. (40) are:

$$
\begin{aligned}
& d_{1}=\left[B_{11}\left(B_{11} / R_{1}+B_{12} / R_{2}\right)-D_{11}\left(A_{11} / R_{1}+A_{12} / R_{2}\right)\right] / e_{0}, \\
& d_{2}=\beta\left(A_{12} D_{11}-B_{11} B_{12}\right) / e_{0}, \\
& d_{3}=\beta\left(B_{12} D_{11}-B_{11} D_{12}\right) / e_{0}, d_{4}=\left(A_{12} B_{11}-A_{11} B_{12}\right) /\left(e_{0} R_{2}\right), \\
& d_{5}=\beta\left(A_{11} B_{12}-A_{12} B_{11}\right) / e_{0}, d_{6}=\beta\left(A_{11} D_{12}-B_{11} B_{12}\right) / e_{0}
\end{aligned}
$$

The coefficients d_{i} appearing in Eq. (41) are:

$$
\begin{aligned}
& \mathrm{d}_{1}=\left(\mathrm{s}_{4} \mathrm{~s}_{6}-\mathrm{s}_{2} \mathrm{~s}_{8}\right) / \mathrm{s}_{0}, \mathrm{~d}_{2}=\left(\mathrm{s}_{4} \mathrm{~s}_{5}-\mathrm{s}_{1} \mathrm{~s}_{8}\right) / \mathrm{s}_{0}, \mathrm{~d}_{3}=\left(\mathrm{s}_{2} \mathrm{~s}_{7}-\mathrm{s}_{3} \mathrm{~s}_{6}\right) / \mathrm{s}_{0}, \\
& \mathrm{~d}_{4}=\left(\mathrm{s}_{1} \mathrm{~s}_{7}-\mathrm{s}_{3} \mathrm{~s}_{5}\right) / \mathrm{s}_{0}, \mathrm{~d}_{5}=\mathrm{s}_{9} \mathrm{~s}_{15} / \mathrm{d}_{0}, \mathrm{~d}_{6}=\left(\mathrm{s}_{9} \mathrm{~s}_{13}-\mathrm{s}_{10} \mathrm{~s}_{12}\right) / \mathrm{d}_{0}, \\
& \mathrm{~d}_{7}=-\mathrm{s}_{11} \mathrm{~s}_{15} / \mathrm{d}_{0}, \mathrm{~d}_{8}=\left(\mathrm{s}_{10} \mathrm{~s}_{14}-\mathrm{s}_{11} \mathrm{~s}_{13}\right) / \mathrm{d}_{0}, \\
& \mathrm{~s}_{0}=\mathrm{s}_{3} \mathrm{~s}_{8}-\mathrm{s}_{4} \mathrm{~s}_{7}, \mathrm{~d}_{0}=\mathrm{s}_{11} \mathrm{~s}_{12}-\mathrm{s}_{9} \mathrm{~s}_{14},
\end{aligned}
$$

where

$$
\begin{aligned}
& s_{1}=A_{11}, s_{2}=-\beta A_{12}, s_{3}=\beta^{2} B_{12}+A_{11} / R_{1}+A_{12} / R_{2}, s_{4}=-B_{11}, s_{5}=B_{11}, \\
& s_{6}=-\beta B_{12}, s_{7}=\beta^{2} D_{12}+B_{11} / R_{1}+B_{12} / R_{2}, s_{8}=-D_{11}, s_{9}=\beta\left(A_{66}+B_{66} / R_{2}\right), \\
& s_{10}=s_{9} / \beta, s_{11}=-2 \beta\left(B_{66}+D_{66} / R_{2}\right), \\
& s_{12}=-B_{11} e_{2} / e_{1}-\omega_{m}^{2} I_{1} B_{11} / e_{1}-2 \beta^{2} B_{66}, s_{13}=-B_{11} e_{3} / e_{1}-\beta B_{12}-2 \beta B_{66}, \\
& s_{14}=\beta^{2}\left(D_{12}+4 D_{66}\right)+B_{11} / R_{1}+B_{12} / R_{2}-B_{11} e_{5} / e_{1}+\omega_{m}^{2} B_{11} I_{2} / e_{1}, \\
& s_{15}=-B_{11} e_{4} / e_{1}-D_{11} .
\end{aligned}
$$

تحليل الاستجابة الديناميكية للقشُريات الضححلة المكونة من طبقات

متعددة الألياف لمختلف شروط الـحافة

$$
\begin{aligned}
& \text { أحد عادل نحضير }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الرياض }
\end{aligned}
$$

ملخص البحت. تز تطوير حلـول تحليليـة للاستتجابة الديناميكيـة للنظريات التقليديـة ذات الدرجـة الأولى وذات اللدرجة الثالثة للقشريات الضنحلة المكونة من طبقات متعددة الألياف ولشروط حافة ختلفـة. تنطبت
 من شروط الحـافة بين الركائز البسيطة أو الحرة أو المثبتة. استخدمت طريقة ليفي بالاقتران مـع الاتجـاه العام الشُكلي للحصول على هذه الـحلول. وني حالة القششريات السـميكة، فإن النتـائب التتي حصلنـا عليهها مـن نظرية القشرة التقليدية للإجهادات والانحرافات تختلف بشكل بارز عن تلـك التـي حصلنـا عليـها في حالة استخخدام نظرية اللدرجة الثالثة. كما أن النتائج التي حصلنا عليها من نظرية اللدرجة الثالثة ونظريـة اللدرجـة الأولى متقاربة في حالة الانحرافات والإجهادات المتعامدة. ومن ناحية أخـرى ، إن نظريـة اللدرجـة الثالثـة لا تتطلب استخدام معاملات تصحيحية قصية.

