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Abstract. Analytical solutions of the dynamic respense of the classical, first-crder and third-order theories of
cross-ply laminated shallow sheils are developed for various boundary conditions. The solutions are applicable to
laminated shells with two opposite edges simply supported and the remaining ones can have arbitrary
combinations of free, clamped and simply supported boundary conditions. A Levy type methed in conjunction
with generalized modal approach is used to obtain these solutions. For thick shells, the classical shell theory
predicts deflections and stresses significantly different from those of the third-crder theory. The third-order theory
and first-order theory results are very close to each other for response and normal stress. However, the third-order
theory does not require the use of shear correction factors.

Introduction

The analysis of laminated composite shells has been the subject of significant research
interest in recent years. The classical lamination shell theories based on the Love-Kirchhoff
assumptions are adequate to predict the gross behavior of thin laminates. A survey of
different classical Jamination theories can be found in [1-2]. When the structures are rather
thick or when they exhibit high anisotropy ratios, the transverse shear deformation effect
has to be incorporated. In such cases more refined theories are needed. Numerous first-
order and higher-order shear deformation theories of laminated composite shells are
presented in the literature [3-11]. The third-order theory used in the present study is
proposed by Reddy and Liu [5], in which the surface displacements are expanded up to the
cubic term in thickness coordinate while the transverse deflection is assumed to be constant
through the thickness. The nine undetermined functions are reduced to five by imposing
stress-free boundary conditions on the transverse shear stress on the bounding surfaces of
the shell. Since the theory accounts for parabolic distribution of the transverse shear
stresses, no shear correction coefficients are required.
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Closed-form solutions for the dynamic response of laminated plates and shells have
been developed mainly for the case of simply supported boundary condition [12-19].
Analytical solutions for the dynamic response of composite laminates for a variety of
boundary conditions are developed in [20-24], where in [24], a brief note is introduced
about shallow shells. Ritz, Galerkin and other approximate methods are used for general
boundary conditions and lamination schemes.

In the present work, a generalized modal approach in conjunction with Levy method is
presented to solve for the transient response of cross-ply laminated shallow shells with
various boundary conditions and for arbitrary loadings. The equations of motions of the
classical, first-order and third-order theories are converted into a single-order system of
equation by using state vaniables. The biorthogonality conditions of principal modes of the
original and adjoint eigenfunctions are used to decouple the state space equation. To
demonstrate the method, numerical results of the three theories for center deflections and
stresses of spherical shells subjected to sinusotdal loading in spatial domain and sine pulse
loading in time domain are presented.

Equations of Motion

The higher-order shear deformation theory (HSDT) used in the present study is based
on the following displacement field ( sce Reddy and Liua {5] }:

(1+i)u+C¢, n2 (30, + i—l)

1 9
V=(1+Ri>v+C¢2 n2c3(¢2+iaa‘g
W= (1)

where ﬁiiii‘w_ are the displacements along the orthogonal curvilinear coordinates such
that the &, and &, -curves are lines of principal curvature on the midsurface { =0, and
{-curves are straight lines perpendicular to the surface { = 0, (u,v,w) are the
displacements of a point on the middle surface, and ¢; and ¢, are the rotations at{ =0
of normals to the mid surface with respect to the §, and &, -axes, respectively. The

parameters R; and R, denote the values of the principal radii of curvature of the
middle surface (see Fig. 1). and ¢ and o are the surface metrics. All displacement

components {u,v,w, ¢,9,) are functions of (§;,§,) and time t.
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Fig. 1. Geometry and coordinate systern of a double curved shell panel.

Substituting Eq. (1} into the linear strain-displacement relations of a shell referred to
an orthogonal curvilinear coordinate system, we obtain

g = e+ L+ 1)

&2 = 0+ +1E3 D)

2
€4 = g9 +76 x}

2
g5 = e9+vL xl

es = ed+5 (k2 + 787 x2), @
where

0_du  w ozﬂ 2 _ 9t 3w
£] 3x1+R1‘ K ax Kl = n2(8x1+ax12),

_v w9 _9%% _ 9% 2w
£s ax2+R2 LY xz, K7 = -n (axz"'ax%)y

_ aw 1 ow

= +_, = ,
€4 = ¢ % Ky n1(¢2+ax2)
as=¢1+aa—‘;’l, K= omCo+ 2,

V- T WL SRCL S 90, 9%, 3’w

T Ty T3 T, 6T mgta o tia ey
3)

Here x; denote the cartesian coordinates (dx; = a-,d?’;i ,i=1,2),and n; = 4/h? and ny =
1'11/3.
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The stress-strain relations for the kth lamina are given by

ol (Q Q2 Qe O O el
o2 Qp Qs 0 0 £2
o = Qs 0 0 qes
G4 symm. Qu O €4
05 | Qss | o LES )

Where ¢, ,0, are normal components; and Gg, G4,05 are shear stress components (see

Fig.2}; and Qij(k) are the material constants of the kth lamina in the laminate coordinate
system.

Fig. 2. Stress components in shell coordinates.

Using Hamilton's principle, the equations of motion appropriate for the displacement
field (1) and the constitutive equations {(4) are derived in [5] as:

ONy ,INg _ T., Ty T ow

EMm * dx2 11U+lz¢1-"{13§)a

ONg BNy _ T s LT 0w

Txy ax2 =LVl ¢z'YIaa—x2

BQ] an K K2 2? P1 8 Py, 5 9°Ps 2°Py Ny N2

—+— + + L =
T ax “Yo{ ) nz( 0 o o) R R q

—d¢ — 3¢ 2
= v 1 E0s 22w @'
nw+Y[13 +lsa +Is ax2+ls Tx2 n3 (a 3.3

8p1+

aM M
a 1 aX6 Ql+Yanl YDZ(

Pﬁ) = 12U+I4¢1 Ylsg

BM IM BT
T R sz Qy+ YKz~ Ynz( P2>-12v+14¢2—us§—xwl )
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where superposed dot denotes differentiation with respect to time, q is the distributed
transverse load which is the only external load considered in the analysis, and N;, M, ...
are the stress resultants:

N Gk 3 ‘
(Ni.M;.P) = 3 | ot®(1,8,87)d0 (i=1,2,6)
k:lgk_l

N &
(QuED= 3 | ofF1,2)dt
k=l§k_l

N &
(QK2)= I | of,hd. |
k=15, 4 (6)

The inertias are defined by the equations,

—
=
|

2
- + — R
Li+Y R In

1 nz
In = h+Yy—13- la-v—= .
2 2 YRI 3-Ynal4 YRIIS

n2

I3 = nalg+—1Is,

3= mle+ ot

Ia = 3-2Yn2ls+Yn3l7

Is = n2ls-n3l7 ,

N &
(Il kI = 3 1 p0., 28068 6y Q)
k=lck_1

Where p'®) s the mass density of the lamina per unit volume and Til are the same as [
except that R, is replaced by R, . The resultants are related to the total strains by

= Al .
Nj = Alej+BiJK?+YEinJ2

= 0
Mi = Bije; *+ Djj K_?""YFij lc]?‘

Pi = Ej e? + By K? + Hjj sz (8)
forij=1.2,6
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Substitution of Egs. (13) and (14) into the equations of motion of the three theories
results in the following systems of equations

HSDT

Un" = c1Um+c2 V' +c3 W' +ca W'+ 05 B1m + 6 D

+bi U+ b2 Wi+ bty

Vi = c7Um'+ca Vi +co Wm +c10 W'+ ¢11 ®1on ' + 13 B,

+bg Vi +bs W + b o

W™ = c13Um" +c1a Vin 15 W + c16 Wi "'+ 17 @1+ c18 Dom
+b7 U +bs Vit bo W +bjo Wey ' +b11 By + bi2 By + a0 Frm
Pim" = c19Um+c20 Vin'+e21 W'+ 22 Wi "'+ c23 @y + c24 Dom
+b13 U +b1a W '+ bis Bim

®am’’ = c25Um'+c26 Vim + 027 Wi+ c28 W'+ 290 B1n ' + 30 Domm
116 Vi t 517 Wen T hig By

(15)
FSDT

Un" = c1Um+c2 Vm'+03 W'+ ¢4 P1m + ¢5s @2m '+ by [y + b2 By

Vm'" = c6Um'+¢71 Vi ¢ Wi+ 0o D1+ 10 Dam + b3 Vi, + ba oy

Wm" = c11Um'+ €12 Vin + ¢13 Win + c14 Dim '+ ¢15 P2m + bs Wy + 20 fm

Dim" = cle Um+c17 Vi '+ c18 W '+ 19 Dim + ¢20 Dam '+ be Uy + b7 Sy

Dam"' = c21 Um'+¢22 Vm + €23 Wi + c24 1+ €25 Pom + b Vg + bo B (16)

CST

Un"=ciUn+caVm'+c3Wm'tcaWp"'+by Uy + by Wiy '

Vm" = csUn'+c6Vmtocr Wm+cgWm' +b3 Vi +ba Wiy
Wn'" = coUn'*cioVm+ el Wm+ci2Wm" +bs Up, "+ b Vi
+b7 Wi + by Wen "+ 20 fm an

where a prime and dot on a quantity denote the derivative with respect to x, and
time t, respectively. The coefficients in Egs. (15), (16) and (17) are presented in
Appendix A.

In order to reduce the system of Eqs. (15), (16) and (17) to a state form, the
components of the state vector { y(x,,1) } associated with each theory are defined as
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HSDT

Yim=Wm:¥om = W' ¥3m=Wm'> ¥Yam=Um:¥5m= Vm> Yom = Pim»

Y7m = P2m Yam = Wm'"s Yo = Unm s Yiom=Vm'»Y1im = Ptm > Y12m = P2m’ (18)
ESDT

Yim = Wm»Yom = Ums¥3m = Vo Yam = Pim»Ysm = P2m

Yom = Wm'+¥7m = Um'> Ygm = Vim's Yo = @im’» Yiom = P2m’ (19
CST

¥im = Wm;)’zm = WmI,Y3m = Wm”s Yam = Umn

y5m = Vm;yﬁm = Wm”" y'?m = Uml‘ygm = le (20)

Using (18), (19) and (20), the system of equations (15, (16) and (17) may be expressed in
the form

{y) =[MUyI+[K]{y}+{r} 21

where the matrices [M] and [K] are defined in Appendix B for HSDT, ESDT and CST as
{12x12), {10x10) and (8x8) matrices, respectively. The elements of the load vector {r} are

{r}T = {0,0,0,0,0,0,0,a9 fm.0.0,0,0} for HSDT (22)
{r}T:{O!O!O!OlO‘IaO fm,0,0,0,0} for FSDT (23)
{17 ={0,0,0,0,0,29 fr,0,0) for CST (24)

Free Yibration Problem

In the case of free vibration problem, the vector { v } will be separated into time and
spatial coordinates as :

{y}:{Ym(Xl)}Tm(t) (25)

To obtain the frequencies and the corresponding eigenfunctions, the generalized coordinates
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Tn(t) must satisfy

Tt @h T = 0 @)
and the eigenfunctions { Y, } will fulfil the following equation
{Y'}1=1AI{Y} 210
where
[Al=I[K]l-0&IM] (28)

w18 the natural frequency corresponding to the mth mode. There are infinite frequencies

for each value of m and the dynamic response is governed mainly by the fundamental
frequency of each mode.

The solution to Eq. (27) is given by:

{Y(x1)) = [DIIn(xs)1(1} 29)
where
{1} = DTNk} (30)
and
oM X 0
[M(x1)]= ; : 31)
0 ghnxi

where n = 12 for HSDT, n= 10 for FSDT and n = 8§ for CST, and }; are the distinct

eigen values of the matrix [A] while [D] denotes the matrix of eigen vectors of [A].
Substitution of (29) into the boundary conditions associated with the edges
x1=*a/2 results in a set of homogeneous algebraic equations of the form

(BIDT'{k}=1{0} (32)

For nontrivial solation of Eq. (32), the determinant should be zero
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iBI/IDI=0 (33

Equations (33) and (29) give the eigen frequencies and the associated eigen functions,
respectively. The boundary conditions for simply supported (S), clamped (C) and free (F) at
the edges x;==xa/2 for the three theories are:

HSDT
Ssvzw=¢,=N=M =P =0
C5U=V=W=¢1=¢2=sﬂ=0
Xt
IPs, _
F:Ni=M; =P = Ng = Mg-n2Ps = Q- my 1+n2(_+axz)—0 (34)
FSDT
Sscv=w=¢=N=M=0
CU=V—W—¢1—¢)2—0
FINy =M =Q; =N¢=Ms=0 (35)
CST
SV=W=N1:M1:0
ow
Cu=zv=w==—"-=90
dx;
1 IMi , ., 9Ms
FN=M:N+‘— =—+2——=0
1 1 6 R2M6 ax1 axo (36)
Adjoint Problem

Equation (21) is not a self-adjoint equation and the eigenfunctions do not form an
orthogonal set, therefore, we must obtain the eigenfunction of the adjoint of Eq. (27) in
order to decouple Eq. (21). Nayfeh in his book [25] showed that the adjoint of Eq. (27) is:

{z'y=-1a1"(7} (37)

with the following associated boundary conditions

T a2
{ZYy (Y} | =0 (38)
-2
According to Eq. (38), the following boundary conditions will be defined at the edges
X\= tal/2:
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HSDT

SiZy=Z74=26=78=Z10=Z12=0
Ca=ZLg=Zy=Zo=2n=712=90
FdiZy+dgZa+d7Z5+7Z7 =0
doZy+dsZ3+dgZs+Z = 0
d3Zj+dsZ3+deZs+Z;; = 0
digZz+d13Z4+disZe+Zg = 0O
diZz+diaZa+di7Z6+ 210 = 0
dizZa+disZa+disZe+Zi2 = 0

FSDT

1

S Zy=74=Z6=173
C:Z¢ =27 = Zs = 2
FidiZ7+d4Z+7; =0
dyZ7+d5Zg+2Z3 =0
d3Zr+dgZg+Zs = 0
Z:-Bzg =10
Z4-Z6-BZ10=0

Zip=0

I
<

Zio

CST

1l
<

S:Zy=74=7Zs =73
CiZ3=Zs =77 = 7

F2d121+d323+25 ={

I
<

da2Zi+ds Z3+Z7 =0
dsZp+d7Z24+ 26 = 0
dgZa+dgZa+7Zg = 0

The constants (d;) in equations {39), (40) and (41) are presented in Appendix C.

A formal solution of equation (37) is given by

(Z} = [CIE(x)]{n}

(39)

(40)

(41)

(42)
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e Mxi 0
[&(xD)]= | : (43)
0 & hnx1
where [C] denotes the matrix of eigenvectors of -[A]T.

Substitution of Eq. (42) into the corresponding boundary conditions defined in Eqs.
(39-41) for the three theories at the edges x;=zta/2 results a homogeneous algebraic

equations of the form

[E}{n}=20 (44)
we have to solve for the eigenvector {n} corresponding to each frequency .

Dynamic Response

Making use of the following biorthogonality conditions of the natural modes with
respect to the eigenfunctions {Yn} and {Z,},

a2 T
- I {Zn} [M][ledxl = Mmﬁmn (45)
-a/2

al2 T

J1Za) ((Ym ) -[KH Ym)) dxi = % M 8mn (46)

-af2

and substituting Eq. (25) in Eq. (21) and left multiplication by the adjoint eigenfunction
{Z,)" and integrate over the domain, we obtain

T + @R T (D) = —— zujrz{z Y {tm }dx
m m Mm o m m 1 47

For zero initial conditions, the state vector {y} will be expressed as

1 t af T
(Y (x )} = =AY (x)D} hm-T) | {Zm) {rm(§,7)}dEdT (48)
Mm 0 a2

where hy,( €-1T)is the impulse response function. To obtain the generalized displacements,
we use Eqgs. (18}, (19), (20) and (48) in conjunction with Eq. (13).
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Numerical Results and Discussion
The numerical applications are carried out for cross-ply spherical shallow shells
whose geometrical and material properties are the same for all layers. The following
material properties of a lamina in its principal coordinates are used:

E, = 1x10° psi, B = 25E,, G2 = Gz = 0.5E,, Go3 = 0.2E,, v, =025

The  transverse deflection presented in the figures is evaluated at
( xl,xz,(;)=(0,b/ 2,%). The stresses are nondimensionalized as follows:

62 = 062(0,b/2,h/2)/qq

04 = 64(0,0,0)/qq
In all calculations, unless otherwise stated, the foltowing parameters are used (see Fig. 1)
a=b=20in, h=2in, R, =Ry =5a,
o = 500 psi, t; = 0.003 sec, p = 0.00012 Ib-s%in*

In all cases sinusoidal distribution of loading in spatial domain and sine pulse in time
domain is used, q(x1,x72,t)=qgcos (R x;/a}sin(mxy/b)F(t), where

sin(®y  0<tr<y
F(t) = t1

0 t>1

Zero initial conditions are assumed and for the first-order theory (FSDT), the shear
correction coefficients are taken to be K442 = K5;52 = 5/6. For the explanation of §, C, and F
in the figures, for example, SSFC means : the shell is simply supported (S8} at x; = 0 and x;
=b, free (F) at x; = a/2 and clamped (C) at x; = - a/2.

The effect of shallowness of the shell on the center deflection of antisymmetric and
symmetric cross-ply spherical caps are displaced in Fig. 4 and Fig. 5 respectively for
various boundary conditions. All the results are obtained using the third-order theory. It is
clear that the plate is relatively flexible when compared to the shell.
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Fig. 4. Effect of shallowness of the shell on the center deflection of antisymmetric ¢ross-ply spherical caps
for various boundary conditions () S858, SSCS and SSCC., (b) SSFF, SSFS and SSFC.,
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Fig. 5. Effect of shallowness of the shell on the center deflection of symmetric cross-ply spherical eaps
for various boundary conditions (a) S5SS, SSCS and SSCC. (b) SSFF, SSFS and SSFC.
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Fig.6. Normal stress ((3;) of two-layered spherical shells for various boundary conditions (a) SSSS,

SSCS and SSCC. (b) SSFF, SSFS and SSFC.
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Fig.7. Transverse shear stress (0_4) of three-layered spherical shells for various boundary conditions (a)
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The variation of the normal stress G, and the transverse shear stress G4 with time are
presented in Fig. 6 and Fig. 7 respectively. The normal stress G, obtained using the third-

order and first-order theories are close and differ from the classical theory for all boundary
conditions. Unlike the normal stress, the transverse shear stress G4 predicted by the first-

order theory differs significantly from that predicted by the third-order theory for all
boundary conditions.

Conclusions

A generalized modal analysis approach is presented for forced vibration analysis of .
cross-ply laminated shallow shells. The equations of motion of the classical, first- and
third-order theories are converted into a single-order system of equations by using state
variables. The biorthogonality conditions of principal modes of the original and adjoint
eigenfunctions are used to decouple the state space equations. An approach to utilize these
modal quantities to obtain the forced response of shallow shells subjected to arbitrary loads
is presented.

The numerical results for the deflection and stress responses are presented for shells
with several different boundary conditions. To demenstrate the effect of shear deformation,
the numerical results for the normal stress of antisymmetric cross-ply shells obtained by the
third- and first- order theories are compared with the results obtained by the classical shell
theory. It is noted that the first- and third- order theories seem to give very close results
different than those of the classical theory because the classical theory ignoies the effect of
shear deformation. The normal stresses of shells with more end constraints { such as SSCC
and SSCS shells) are seen to be more affected by the shear deformation than the shells with
less end constraints ( such as SSSS, SSFF, SSFS, SSEC) shells. As expected, difference is
observed in the transverse shear stress calculated by the third-order and first-order theory
because the third-order theory accounts for a layer-wise parabolic distribution of transverse

shear stress whereas the first-order theory accounts for layer-wise constant states of
transverse shear stress.
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Appendix A

The coefficients appearing in Eq. (15) are :

c1 = (e7e3p-e3eaa) /eo c2 = (e2e30-e3e29) /en-c3 = (egesp-esess)/eos

ca = {esesp-esesz)/ep.cs = (egeso-esess)/ep.cs = (esesn-ezear)/eo,

c7 = (egesp-erness)/ co.c8 = (erae30-e12e41)/co.co = (er6e3n-erzeas)/ cos

cio = (e1ze30-ejneq0) /co-ciy = (erreag-erzesg)/co-c1z = {e1sesp-ezeaz )/ co.
c1o = (eress-erezg) /eg.cao = (e1e29-ez¢28)/ep-c21 = (er1e33-egeas)/eo.

c22 = (ereaz-esen)/eq.c23 = (e1e3s-egeas)/ ep-caa = (eresi-eqen)/ep.

c25 = {epeas-esesr )/ corcae = (er0eq1-e1aear)/ co o7 = {eineq3-er6e37) /o
czg = (elpedo-e1zesr)/co.co0 = (eroeag-ernesr)/corcao = (er0eqz-ersesr)/co.
c13 = aglcrezitcraiteasazteoiveastegs ) ca = aglcgaj+eogaz+ery),
ap{coar+caraz+ean).cig = ag(croar+cazaz+eaen +eziesterg),

c1s
ci7 = aplerrag+egas+esen +eaenaterr).cip = aplezar+eapaz +epgl,

by = (eams-ezomy)/ep.b2 = (eamua-ezpms)/eg.by = (eamua-esomal/ep.

b4 = (e12mig-esomq)/co.bs = (e;zmi7-e39mg) /co.bg = (e1amig-esoms )/ cp.
“bis = (e2smi-e1ms)/ep-brs = (e28m3-e1mia}/eo.bis = (e2smz-e1mi3)/eg,

bie = (e37mas-eromig)/ co-bi7 = (e37mg-eromy7)/ co.big = (e37ms-elomig)/ cos
b7 = ag(ez1bi+e23biz-mi1). bg = ag(bga;+bjgaz-mi2),bo = ag(bsar+by7az-my),
bio = aglez1ba+easbia-me).bir = ag{ez bs+ezzbis-mg),

bi2 = ap(bsar+bigaz-mio).e0 = ezezz-eresn,co = €12€37- €10€39+

ap = -1/ {cqenitomeniters).a) = caeny +eooez3tersaz = ceeal+caaers+ezqs
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where

e] = Ai1.ez = -B{A12+Ac6).e3 = Bii-n2En1»
es = Plna{Ei2+Bes)-Bi2-Besl, es = -n2E11,

n2[B? (Eia+2B66) 1+ A/ R+ A2/ Ry 7 = -B Acs»

il

€6

2 _ _
eg = B“(n2Ess-Bes)-e9 = -e2.e10 = Ags-
_ _ _ )
el = -e4-€12 = Bes-n2Esg.€13 = -Bn2(Er2+2Ees).e14 = - B Az,

eis = B2 (n2Ex-Bn)rets = naB Bz +B( A/ Ri+An/R2),

17 = Ass-niDss-ni{Dss-niFss) +

n2 B*[ n2 (Hjz +2Hes ) - (Fia+2Fes)1-(Bry-n2 Ep1 )/ Ri- (Biz-n2 Bi2 )}/ Ry
e18 = Ass-ni Dss- 1 (Dss- nj Fss)+n% 8% [ 2 Hiz +4 Hes ]
+2n2(E1t/R1+Ej2/R2),

€19 = -BlA4s-11Daa-m (Das- n1Fag) 1+ n2 B° (Faz-na Haz)
+B(Bi2-n2E12)/R1+B(B22-n2E22)/R2,

e = -32[A44-mD44-n1(D44-n1F44)]-n%B4H22

-2n2B% (Eiz/ Ri+E22/R2)- A/ RY -2 A2/ (RiR2)- A2/ R},
e21 = -es,e22 = e13,e23 = n2(Fi1-n2Hit)s

e24 = Bn2ln2(2Hes +Hi2)-(Fia+2Feg) l.eas = -n3Hip.e26 = -e5
€27 = el6-e28 = €3.€29 = eq.e30 = Dy1-2n2Fi1+nd Hir

BL2n2(Fiz+Fes)-n3{Hiz+Hes)-Di2-Deslres2 = -e23.€33 = -e17,

H]

3]
2 2
e34 = eg.e35 = m{(Dss-mFs5)-(Ass-n1Dss) +B 12 n2Fes- Des-ny Hes -
- _ _ 2 - _
e36 = -e4,e37=e12,e38 = -e31,e39 = Des-2n2Fes+ny Hes.c40 = €24-¢€41 = €155
2

ea = n1(Daq-mFag)-(Aga-mDaa) +B°[2n2F2z-Do2-niHazloeas = erss

_ T _ T - T - T AT _ 2 2
mi = [.mz =I,m3=-Ims=T'ms = I2,me = -Pl',m7 = 1 +P n3l7.
mg = -n5l7,me = Is.mio = -PIs.mi1 = -m3.m12 = me.mi3 = I4,mi4 = -my,

mj5s = mz.mj6 = mMi3.-mi7 = mio>mig = ms-
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The coefficients appearing in Eq. (16) are:

c1 = (eaeai-eseis)/ep.c2 = (eserg-ezers)}/e0.c3 = {ezexs-eigesi)/ e,

ca = (esen-ese19)/en.cs = (ezezn-eaerg)/ ep.ce = (egezr-elners)/co-

c7 = (er1e27-e10e)/ co-ca = leareaz-epesn)/ co o0 = {e9en7-eroe26)/ cos
cip = (e1zez7-e10e20)/ co.c11 = -e33/ e13,ci2 = ~eaale13.c13 = -e15/ erss

c14 = -e1a/e13.c15 = -e16/ e13.c16 = (eser7-erez1)/ ep.c17 = (ezer7-erers)/ e,
cig = (e17e31-e1e23)/eprcio = (eger17-e1e22)/en-c20 = (eqe17-erezp)/ eos

c21 = (e7e25-egen4) /coscoz = (e7eas-er1e24 )/ co.c23 = (eresn-ezaeny)/co,

c24 = (e7e26-e9e2a)/ co.cas = (e7ez9-e12e24) /co. b1 = (erol1-e312)/ eps
by = (ej9lz-e313)/eg:b3 = (e1plz-e2711)/ co-ba = (ejpla-e2712) /co.
bs = Ii/e13.bg = (e1lz-e17l1)/ en b7 = (e1l3-e1712) /eg.bg = (easL1-e712)}/ co,

by = (eaala-e7l3)/co.e0 = erer9-eserr.co = ejoeza-ererr ag = -1/ens-

where

el = Ar1se2 = -B(A12+Ags).e3 = Bisea = -B(Bj2+Beg)res = - B Agss
_ 2 _ - _ 2
%F-B B66’e7—A66ses_“02,eg—"34,810=B66,e|1=-ﬁ A22,

2
ez = <P Baz.e13 = KdsAssiera = K25 Ass-Bii/R;- B2/ Ry,

eis 'BZKLAM-AHIR%'ZAn/(Rle)-Azzl’R%,

clg = 'BK§4A44+ﬁ(B12IR1+B22/R2),e]7 = e3.818 = €4-

et9 = Ditseo = -B(Di2+Des)ea1 = egrez = -Bz'Dee-K§5A55,

€23 = "C14-€24 T €10.€25 = -e4.€26 = -ez0,-e27 = Dess
— _ 2
€28 = e12,e29 = -B D22'K%4A44,e30 = e16,e31 = A1/R1+ A2/ Ra.

e3z = BCAIR/RI+ A2/ R2)e33 = -e31,e34 = €30
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The coefficients appearing in Eq. (17) are:

c1 = -ez/el,c2 = -eafer,c3 = -es/er,cq = -ealercs = -eg/er,

c6 = -eg/e7.c7 = -e1p/e7.c8 = ~eg/e7.co = -ea1/e1s,cr0 = -e22/e1s,
c11 = -ezo/ e1g-c12 = -er9/ e1g.by = I/ er.b2 = 12/ ey,

bi=Ii/e7.bs = -Bl2/e7.b5 = -Liet4/ (ere18)-12/ e13,

be = -Liets/{e7e18) + hesera/ (ererers) +BIr/ ers,

b7 = - (4 +B*B)/eis+BLaeis/ (e7e1s) -Blresers/ (ererers)

bg = Isfeig+Iaerqf (erergt a0 = 1/ ers.

where

e1 = Arr.ea = -P*Ags.e3 = -B(Aj2+Ags) 64 = -Biis

es = B°(B12+2Bgs) + A1/ Ri+A12/Ra.e6 = -e3.¢7 = Aggres = -B A2,
es = -B(Bi2+2Bgs)-e10 = B B2 +B(A12/Ri+ A2/ R2).e11 = Dy

e12 = -2B*(Di2+2Dgs) - 2(B11/R1+B12/R2),

e13 = B* Do+ At/ RI+2 A0/ (RiR2)+ A2/ R3+2B*(B12/ Ri+B22/R2),
€14 = e4:€15 = €5.€16 = -€g. €17 = -€10-e13 = el1-eqe14/ €],

e19 = epz-eseia’ e1-egerg/ e7 +ezegers/ (erer).

e20 = ef3-ejoels/ e7+ezeroers/ (erer ),

e21 = ejs-exeqa’/ el-ceers/ e7 +ezeseia/ (erer ),

e22 = ej7-egels/ e7+tesegers/ (ere7).
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Appendix B
The matrices [K] and [M] in Eq. (21)
HSDT

[0 1 0 0 0 0 0 0 0 0 O
o 0o 1 0 0 0 O O 0 0 0O
0O o 0 0 0 0 O 1 0 0 0O
6o 0 0 0 O 0 o0 0 1 0 0
0O 0 ¢ 0o 0 O 0 0 0 1 0
6 o 0 0 O 0 O 0 O O 1
[K1=] o 0 o o0 0 0 0 0 0 0 0
as O e O as O cg 03 0 ¢y
0 ¢ 0 ¢ 0 ¢ 0 cg 0 ¢ O
¢ Ocio O cg Oz 0 ¢ O cp
O cay 09 Oocpz 0y 0y O
Lcz7 Oocog 0 cos Oczp O cas "0 cp
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FSDT

[M]=

[K]=

o0 o o o @ O

=

bs

o O O o o o o ©
o O o O o o o

bio

=a
3
]

0 bia 0

b7

o o o o @

€13

c8

€23

o o o o o
[one R e B e B - S e

Cr2

Cl6 0

0 ¢
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o o O o © o o O
o Q0 o O o o o

=g
=)

bis O
0 g

[T o B S e T e R
R e B e B e B e

€15

cg O

cig O

G cas

o O O o O o o O
o o O o O O

bi2

=R e R o e R =
I e R

Cl1

0 00
0 00.
0 00
0 00
0 00
0 00
0 00
0 by O
0O 00
0 00
0O 00
0 00
0

O 0©

1 0

0 1
0 0
0 cq
cg O
0 co
a; 0
0 cz4

[one T e e S o B o B -

o o o o o oo @ o o o oC@

b

o R e B T

oS o o O

—

C5

€20
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[M]=

[K}=

o o o o ©
-l e B e N o B o= B we

bs

=]

b1

0 bg
0

]

== T e T e T s R
o B - R e =

Ct1

C',IO

e e o e D = R i ]

b3

bs

—

o B e B

Ci2

5]

- s N o B v B e i e}

b2

b7
0

oo O o o O

o O O o o o O
o o o o o o o o o

b4

by

o o O O O

C10

=

6

0000
0000
0000
0000
000
0000
0000
0000
0000
0000
0 0 0
0 0 0
1 ¢ ©
0 1 0
0 0 1
0 ¢ O
ca 0 ¢o
0cs 0|
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[M]

o o o o O
OQO‘OOO
[on S o S v T e I v
o o O O o <
=T - T - T e B

=n
o0

be
0]32 Oy O

by C¢ 0 O by

Appendix C

The coefficients d; appearing in Eq. (39) are:

dp d2 d3 83 84 82
da ds dg¢ [=-| s9 si0 s8
d7 dg do $15 816 514
dig dii diz 521 519 822
di3 disa dis |=-| s26 sz4 527

dis d17 dis 539 37 S40

0 00
0 00
0 00
0 00
0 00
0 bs 0
0 00
0 00
s6 S1 S5
sl2 87 Sl
sig SI3 S17
0 sy s
0 sa5 s28
s42 $38 sl



Analysis of the Dynamic Response of Cross-ply ... 113

where
2
si = A11-s2 = -BAi2,s3 = n2B Eiz+ At/ Ri+ A2/ Ra,s4 = -n2E11s
s5 = Bi1-n2E11.s6 = B(n2E12-B12).s7 = Biy.sg = -B Bz,

B2 n2Fia+Bi1/ Ri+Bi2/ R2.s10 = -n2Fup»

s9 =

s11 = Dii-n2Fiissi2 = B(n2Fi2-Di2)»s13 = Eiios14 = -BE2:

815 = n232H12+E11/R1+E12/R2,816 = -n2Hi1,s17 = Fii-n2Hip»
sig = P{n2Hi2-Fi2).s19 = B Ag6.520 = As6-521 = -2P n2Ess-

s22 = B(Bes-n2Be6):523 = Beo-n2Ee6.524 = $22,525 = 523

526 = 2B n2(n2Hes-Fos)»s27 = B(De6-2 n2Fes +n3 Hee)»

s28 = $27/B.s29 = Ass - m Dss-ny ( Dss - m Fss) +B’ n2{ n2 Hes - Fes)

s30 = Ass-m Dss-ni{Dss-niFss)+B”n3 (Hi2+2Hes) + n2(E1)/R1+E12/R2).,

s31 = n2Ei1.s32 = -Bn2(E12+Es6)-533 = n2(Fii-n2Hin)»

2
s3a = Bna(nzHi2+n2He6-Fia-Fes)»s35 = -n3 Hilss36 = -n2 P~ Ees.

s31(c1 - m br ) +533 (c19 - W b13 ) +s36. 533 = s31C2+ 833020+ 8325

837
s39 = s30+s31{c3- whb2) +s33(c21- 0 bia) -
540 = $29 + 531 (c5 - @i b3 ) +s33{ca3- & bis)

5§41 = 83106+ 533C24 +534:842 = §31C4+533¢22 +5815.
The coefficients d; appearing in Eq. (40) are:

di = [B11{B11/R1+Bi2/R2)-D11 (A1 / Ri+ A2/ R2) 1/ eg.

d2 = B(A12D11-Bi1B12)/ e,

d3 = B{B12D11-BiiD12)/e0.ds = (A12B1i- Ai1B12) / (egR2),
ds = P(A11B12- A12B11)/ e0.ds = B( A1) Di2-B1iBi2)/ eo-
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The coefficients d; appearing in Eq. (41) are:

d| = (s486-s288)/sp.d2 = (s4s5-s188)}/s0.d3 = (s2s7-5386 )}/ 50,

ds = (s1s7-35355)/80.ds = s9si5/dg.dg = (s9s13-s10812)/ do,

d7 = -si1s15/do-dg = (sips1a-s11s13)/ dos
80 = $38§-5457.dg = s11512- 59514,

where

2

s1 = Ar1:s2 = -BAi2.s3 = B"Bia+An/Ri+ A12/R2,s4 = -Bi1,ss = Bii,

s6 = -BBi2:s7 = B*Diz+Bi1/Ri+Bi2/R2.53 = -Dit.so = B(Ags+Bes/R2),
si0 = so/B.si1 = -2B(Bes+ De6/ R2)

s12 = -Briez/ e1- w1 Bit/e1-2B° Besos13 = -Bires/e1-BBi2- 2P Bes.

B*(Di2+4Des) +B11/ Ri+Bi2/Ra-Biies/ e+ wh Biila/ e,
si1s = -Briea/e;-Diy-

Sta
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