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Abstract. A one-point collocation scheme is developed for the transient heat conduction problem. The scheme 
makes use of the asymptotic solution of the problem for short time and the fact that initially the temperature 
profile can be divided into two zones, a fast temperature changing zone and inactive zone. For long time a Biot 
number dependent collocation point is used. The method provides approximate solutions which compares well 
with the numerical solution and other approximate solutions. 

Notation 

a Shape factor in Eq. 1 

A Biotnumber 

m Dermed in Eq. 56 

Nu Nusselt number 

r Dimensionless distance 

r, r at the collocation point 

t Dimensionless time 
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t, Time at A ~ 0 

u Dimenstionless temperature 

Us Surface temperature 

IT Average temperature 
ill u at the collocation point 

Greek Letters 

a Defmed in Eq. 26 

~ Defmed in Eq. 28 

A. Dimensionless distance of the inactive zone 

Introduction 

The transient heat conduction problem has been treated by several investigators [1-7] who 
were seeking approximate analytical solution for it. On the other hand, its numerical solution 
is well established through fmite difference, fmite element and orthogonal collocation 
methods [8]. 

ii 
In this paper through the judicious choice of the collocation point and taking into 

consideration the steep profile at initial time, a one-point collocation method is used to 
obtain an approximate analytical solution which compares well with the numerical solution 
and other approximate solutions. 

Although the problem has an analytical solution in the form of an infinite series, this 
solution requires a large number of terms for the short time and requires obtaining 
eigenvalues by the solution of transcendental equation. Another fonn for the solution is in 
terms of error function which is not convenient to use. In addition establishing an 
approximate solution for a linear problem could be the first step for doing the same for a 
non-linear problem. 

Method Development 

The dimensionless temperature profile u along the dimensionless distance r in the one 
dimensional transient heat conduction problem is represented by 

au o'u a au 
-=--+--
ill Or 2 r Or (1) 



with the initial condition at 

and the boundary conditions; 
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t~O,u~OforrE[O, I] 

au 
-~O at r~O, t;,O 
Or 

au 
Or ~A(I-u,) at r~l, 1>0 
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(2) 

(3) 

(4) 

where Us is the surface temperature, i.e., ulr=b a = 0 for a slab, a = I for a cylinder, a = 2 
for a spbere and A is the Biot number. 

The average temperature jj is defined by 

1 

jj~(a+l)fr' udr 
o 

(5) 

We present here a ooe point collocation method that would lead to an approximate analytical 
solution. The method will be based on the dead zone concept [7, 9, 10] for the steep profile 
which occurs at the initial time. 

For the one-point collocation, the temperature profile will be initially a sharp profile, 
thus we can divide the distance to an active zone and a dead zone. We will have 

u = Us 
(r-~)' 
I-~ for ~:9::: I (6) 

and (7) 
u ~ 0 for 0:9:::~ 

At t = 0, A = I and as time progresses we reach a situation where A = O. At this instance, U 

~ Us r2 forr E [0, I]. This will be the initial condition for a standard one point collocation 
as will be illustrated later. In the sequel, we will obtain expressions for detemriniog ~, 
optimum collocation pOint, the temperature profile, the surface temperature and average 
temperature. 

Substitnting expression (6, 7) in the boundary condition, Eq. 4 and the average 
temperature Eq. 5, we will have 
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2u, 
(I-I.) ~ A (I. us) 

or 

u, 
(8) 

_ (r_I.)2 U~(a+l)rr'u, I-I. dr 
(9) 

For an integer value of a, this expression leads to 

ii ~ u, (1- I.) ± (i + 2)(i + 1)1.'·il 
(a + 2)(. + 3) i_O 

(10) 

For a slab, a = 0, 

- (I-I.) u=:=us -
3
- (11) 

For a cylinder, a = 1, 

_ (1- 1.)(1. + 3) 
u = Us 

6 
(\2) 

For a sphere, a = 2, 

(1_1.)(1.2 +3).+6) 
u =u s 10 

(13) 

Substituting equations (6,8) into the partial differential equation (I) we obtain 

lA(r - 1.)(1- 1.)(2 + A(I- I.» - (r - 1.)(1 + A(1- I.)) d(l- I.) 

(1_1c)2(2+A(I_1c»2 dt 

_ 2A [I+.(r-I.)] 
(1-1.)(2+A(I-I.)) r 

(14) 
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TIris equation is to be satisfied at the collocation point Ff.(i-A)+A. Thus we have 

d(l- A) [2 + A(I- 1..)][" (1- 1..)(1 + a) + A] 

dt r, (1- 1..)[(2 - r,) + A(I- r, )(1- A)][r, (1- A) + A] (15) 

or written in another way as 

d(l- Ai 2[2 + A(I- A)][r, (1- 1.)(1 + a) + A] 

dt r,[(2 - r,) +A(I-r,)(I- A)] [(r, (1- A) + A 
(16) 

Although Eq. 16 can be integrated analytically, the solution will not be explicit in A. 
So we either solve it numerically or try to obtain an approximate solution for A. In addition 
we have to use an optimum value for II" 

The first approximation is obtained as follows: 

For the case ofa slab (a ~ 0) and as A --> 00 

d[l-Al' 2 

dt (I-r,)r, (17) 

or 

(18) 

as A-->O 

d[l-Al' 4 
dt (2-r,)r, (19) 

Combining Eq. 17 and 19 in a form that depends on A and have the same solution as 
A -->00 and A --> 0 we obtain 

d[l-A]' 2 

dt (20) 
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[I-A.] ~ 
2t 

r(I_(A+I)r) 
I (A+2) I 

(21) 

This expression is extended through comparing numerical results with exact results for 
any shape to give 

The second apprOltimation is obtained by substituting for (I - A.) from Eq. 18 in the right 
hand side ofEq. 15 and then integrate to obtain 

where 

[1-A.1, = (I-(o+l)rl) d
l 

rl[(I-rl)A+(2-rl)(I-(a+l)rl)] 
(I-r,) A(I-r,)'(A+2-r,) 

In(I+d d)- ar,(2-2r, +A) In(I+d d ) 
I' (I-r,)'(A+2-rl) , , 

2t 
d I = .1-.,.,.--,

r,(I-rl) 

d, = A(I-r,) 
(2 - r l ) 

d,=-(I-rl) 

(23) 

The third approximation is obtained by substituting for (I - A.) from Eq. 18 into Eq. 
16 to obtain after integration 

[I-A.]: = (1-(a+l)rl) dl- 2rl[(I-rtlA+(2-rl)(I-(a+l)rl)] 

(I-rl) A(I-rl)'(A+2-rl ) 

2ar,(2-2r, +A)(di _ In(l+dld,») 

[
d

l 
In(l+dld,)]_ d, 

d, (l- rl)'(A+2- rl) 

(24) 
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Comparing numerical results with exact results lias shown that Eq. 23 is good for large 
A while Eq. 24 is good for small A. 

Thus we combine both expressions into the following: 

[1- A] = [(1- A), + A(1- A), 1 
4 (I+A) (25) 

Now the optimum value for r1 is obtained as follows: 

For short time and for the case of a slab. the following asymptotic solution for IT can 
be obtained from the asymptotic results of Martin and Saberian [I] as, 

_ I 
u = a = ---;=--=-----;=~ 

I ,ft (I + 5A,f,rt) - + ..:...:,~=.;.;.;,;.c 
A (.In +lOA,ft) 

Our collocation analysis gives the following expression for IT; 

IT = _u,-" (-:-I-_A..:,.) (1- A) 2 

3 -3(I-A)+6/A 

(26) 

(27) 

Substitution from Eq. 26 into Eq. 27 we obtain a quadratic equation in (I-A) which gives 
the solution \ . 

I 3a+~9a2+T 
(1-1..)-13= 2 

substiNting from Eq. 28 into Eq. 21, we obtain 

(
1- 1-8~2t (I+A) (2+A) 

(2+A) 
r, = -'-""':'---::-::--'-.,--'---

2(l+A) 

\ 

J¥t I ~ ( HJ" AsA ..... <Xl."' ..... -, ~ ..... - ..... - and r, ..... I- 1--/2 
1t 3a 36t 9 

(28) 

(29) 

(30) 
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As A -)0 0, a -)0 At, 
I 

P--+-
..[6i (31) 

For small time the expression inside the square root CQuid become negative. In this case, 
r 1 is given by 

2+A 
r -
1- 2(1+A) (32) 

As A. becomes zero the inactive zone disappears and we will have just onc zone for 
which standard collocation can be applied. The collocation point is taken as suggested 
by Villadsen and Michelsen [7] to be A-dependent as 

, (a+I)(A+a+5) 
rl = (a+5)(A +a+3) (33) 

and 

At the instant of switchiog from the two zones ioto one zone, we will have 

I 
u =--, 2 

1+
A 

r' 
u=--2-

1+
A 

_ (a+I)A 
u= 

(a+3)(A+2) 

As time increases, derme 

where ul is the temperature at the collocation poiot rl' ii is then given by 

U= a+ r u =-- U + - ( I)J' dr I [(a+I)-(a+3)r" _::..:2U,-,;':-] 
(0+3) (I-r.') '(I-r,') 

(34) 

(35) 

(36) 

(37) 

(38) 
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At the colloc.tion point, Eq. 1 becomes 

du, 2(. + I)(u, - u,) 

dt (I-r[) 

and Eq. 4 becomes 

Therefore 

Thus 

du'l 2 1 du, 
dr ,~, = (I-r,2) (u,-u,)=A(I-u,)= (.+1) dt 

du, 
- ~ (.+I)A(I-us) 
dt 

du, _ (.+I)(I-u,) 

dt 
- (.+I)A(I-u,) 

I-r[ 1 --+-
2 A 

(I-r,2) 
I+--A 

2 

2 2 l-rl 1 
U = Ar, + (2 + A(I- r, )) 1-e 2(a+') + A( .. ,) 

[ 

-(1-10) 1 
'A+2 A+2 

l_rl
2 1 

[ 

-(1-10) 1 
U =_A_+_2_ l-e 2(a+I) + A(a+l) 

a (A+2) (A+2) 

where to is the time .t which "II. ~ O. 

From Eqs. 38, 43-45, we obtain: 
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(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 
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1 rl
2 l 

[ 

-(t-t,) 1 
ii- (a+I)A + 2(A+a+3) I-e 2(.+1) + A(Hl) 

(a+3)(A+2) (a+3XA+2) 

Substitutina Bq. 46 into Bq. 42, we obtain 

dii (a + 1)(1- ii) 

di"= I-rl I 
--+-

2 A 

We notice that as A -+ 0, ii -+ u, -+ 0, u. -+ u, -+ 0 

Comparison with previous work 

(46) 

(47) 

(48) 

The application of the method of moments [7] to Bq. 1-4 would lead to the following 
expression for the average temperature 

- I [(a + I)t ] u = -exp 
I I 
-+-
A (0+3) 

(49) 

For short time the true average is lower than that calculated from Eq. 49 whereas for 
long time it is higher. Thus expression (49) is generally not accurate enough. 

Higher accuracy for long time is obtained through Eq. 47 derived in this paper. 

On the other hand Dixon [6] developed an expression similar to Bq. 42 for the case of 
a cylinder and instead of using Eq. 38 for calculating the average temperature, he used the 
approximation 
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(50) 

This makes his results less accurate specially for large A. 

Harriott [2] obtaioed the following expression for the case of a sphere and A ~ 00 

- JI -101 u= -e (51) 

This expression has an overall accuracy better than Eq. 49 but still less accurate than 
Eq. 47 for long time. 

Martin and Saberian [1] obtained an expression of high accuracy given by 

where 

U.I--
J ~~~J ·"1 A Nu(t) 

, b=0.2 
Nu(t) = JNu~ - b' +(Nuo + b)' 

a+3+A 
Nu~ = (a+I)A 

1+ , 

" 2 

m 

slab 

m = 2.4048 cylinder 

" sphere 

(52) 

(53) 

(54) 

(55) 

(56) 

This expression satisfies the short time and long time asymptotes. Better values for m' 
are the collocation weights 2.5 for a slab, 6 for a cylioder and 10.5 for a sphere. 
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In this paper we developed short time and long time expressions which will be compared 
with Martin and Saberian [I] expressions in the next section. 

Numerical Results 

The nwnerically exact solution for equations (1-4) is obtained through the application 
of standard orthogonal collocation method [7] using 16 collocation points. Four approximate 
solutions are compared with the exact solutions; for short time, together with Eq. 6-13 the 
approximate solutions for A. the dimensionless distance of the inactive zone, given by the 
(i) numerical solution of the differential Eq. 16, (ii) equation (22), (iii) Eq. 25 with the long 
time solution given by Eq. 43, 44, 46. The switching time to from the short time to the 
long time solution occurs when A = O. The fourth approximate solution for comparison is 
the one derived by Martin and Saberian [I] (Eq. 52-55). In Tables [1-3], we compare the 
integral of the square error I given by 

I [ 2 
I = J uapproJlimate - Uexact ] dt (57) 

" 
for the four approximations. 

Table 1. Comparison between integersl square error for the approximate solutions ror the case of a 
.lab (a-o) 

A In Approximation 2nd Approximation 3rd Approximation Martin and Saberian 

Eq.16 Eq.22 Eq.25 Approximation 

0.1 1.66 x 10-9 3.512 x 10.8 4.745 x 10.8 6.944 X 10-8 

2.5546 X to-5 5.0905 X 10-7 9.5528 X 10-5 7.816910-6 

10 1.8298 x 10-4 3.0487 x 10-s 1.8089 X 10-4 1.1642 X 10-4 

100 1.9827 x 10-s 9.0135 X 10-6 1.7292 X 10-5 2.3113 X 10-4 

1000 7.2232 x 10-6 6.7316 X 10-6 7.2778 x to-4 2.5184 x 10-4 

10000 6.6079 x 10-6 6.5659 x 10-4 6_6287 X 10-4 2.5404 X 10-4 

Table 2. Comparison between integeral square error for the approximate solutions for the case of a 
cylinder (a=-l) 

A lit Approximation 
Eq.16 

0.1 4_3404 x 10-6 

1 4_6451 X 10-6 

10 1.3496 x 10-4 

100 3.0465 x 10-5 

1000 1.8984 x 10-5 

10000 1.8509 x 10-6 

2nd Approximation 
Eq.22 

2.1001 x 10-6 

4.1509 x to-S 

2.3763 x 10-5 

2.5136 x 10-5 

2.3338 x 1O-5 

2.3174 X 10-5 

3rtl Approximation 
Eq.25 

4.4994 x 10-6 

4.5035 x 10-6 

6.3526 X 10-5 

1.8476 x 10-5 

1.9325 X 10-5 

2.005 X 10-5 

Martin and Saberian 

Approximation 

2.9022 x 10-7 

9.2794 x 10-6 

4.6063 x 10-s 

2.3113 x to-5 

9.0169 x 10-5 

9.IJ86x 10-5 
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Table 3_ Comparison between integeral square error for the approximate solutions for the case of a 
sphere (a;:;;:2) 

A 1st Approximation 2nd Approximation 3rd Approximation Martin and Saberian 

____________ ~E~'g~,~1~6'_c_------~E~'~g.~2~2'-_c------~E~'g~.~2~5~c_-----"A~p~p~r~o~x~i~,~~~ 
8.5852 x 10.7 1.0856 x 10.5 4.5867 X 10-6 5.6463 X 10-6 0,1 

1 2.2866 x 104 8.4376 x 10-5 

10 1.6387 X 104 4.2543 X 10.5 

100 6.5906 x 10-5 5.0170 x 10-5 

1000 4.2956 x 10.5 4.7643 x 10.5 

10000 4.1643 x 10-5 4.7368 x 10-5 

1.00 

Sphere 

0.80 

* 0.60 
* 

u 

0.40 

... 
• 

0.20 + 
* 

* 

1.2100 x 10.5 

9.5589 X 10-5 

3.9699 x 100.5 

3.2992 x 10.5 

3.2551 X 10.5 

* 
* 

* 
Slab 

A= 10 

Numerical Exact Solution 

1st Approximation eq. 16 

2nd Approximation eq. 22 

3rd Approxi mation eq. 25 

1.4700 x 10-5 

3.7592 x 10.5 

5.0728 X. 10.5 

5.3951 x 10-5 

5.4374 x 10-5 

Martin & Saberian Approximation 

0,00 --f-~-~---r---,--'---'---'--'- r-

0,00 0.20 0.40 0.60 0.80 
t 

Fig_ 1. Comparison of average temperatures for different shapes. 

1.00 
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0.80 
* 

* 
* 

Slab 

0.60 

U 

0.40 
A~ 1000 

Numerical Exact Solution 

... 1st Apprmcimation eq. 16 

• 2nd Approximation eq. 22 

0.20 + 3rd Approximation eq. 25 

* Martin & Saberian Approximation 

0.00 0.20 0.40 0.60 0.80 1.00 
t 

Fig. 2. Comparison of average temperatures for different shapes. 
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1.00 .,-----------------------, 

0.80 

Sphere 

0.60 

Cylinder 

0.40 

0.20 

0.00 

'" • + 

Slab 

A=O.l 

Numerical Exact Solution 

1st Approximation eq. 16 

2nd Approximation eq. 22 

3rd Approximation sq. 25 

* Martin & Saberian Approximation 
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0.00 2.00 4.00 t 6.00 8.00 10.00 

Fig. 3. Comparison of average temperatures for ditTerent shapes. 
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1.00 

u 

0.00 0.20 0.40 

Fig. 4. Temperature proide for transient heat conduction. 

r 
0.60 

0=0 
A-tO 

* u1 

• Ii 

0.80 1.00 
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It is noticed that the second approximation has the best overall performance whereas 
that of Martin and Saberian is not as accurate for large A. Figure I compares the average 
temperature change for the case of A = 10 and different shapes. Again the second 
approximation shows the best performance. Figure 2 shows the same trend for the case A 
= 1000. For small A (A = 0.1 ). Fig. 3 shows that it needs longer time to reach steady state 
since the heat flux at the snrface is smaller. Table 4 gives the value of the collocation points 

for different time and A whereas Fig. 4 gives the change in u with time and distance during 

the two zones period and the one zone period. It is indicated on the same figure the value 

ofu at the collocation point (ul) and the average u (jj ). When A = 0, the collocation point 
and hence u 1 changes. 

Table 4. Values of colloeation point! for the ease of a slab (a "" 0) and A - 10 for different time and A. 
A r, two-zone r, one-zone 

0.8 0.0066 0.4429 

0.6 0.0225 0.3562 

0.4 0.0464 0.3215 

0.2 0.0778 0.3015 

0.0 0.1166 0.2882 0.4804 

Conclusions 

Using a one point collocation method, we are able to obtain accurate approximations 
for the average temperature. The secood approximation represented by Eq. 22 for short 
time and Eqs. 43, 44, 46 for long time is particularly simple and more accurate than other 
approximations. The success of the method is mainly due to the proper selection of the 
collocation point which is chosen using the asymptotic solution for short time and using an 
A dependent collocation point for long time. 

Acknowledgment Authors gratefully acknowledge the Research Center at College of 
Engineering, King Saud University, Riyadh, Saudi Arabia for its support of the project. 
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