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Abstract. A one-point collocation scheme is developed for the transient heat conduction problem. The scheme
makes use of the asymptotic solution of the problem for short time and the fact that initially the temperature
profile can be divided into two zones, a fast temperature changing zone and inactive zone. For long time a Biot
number dependent collocation point is used. The method provides approximate solutions which compares well
with the numerical solution and other approximate solutions.

Notation
a Shape factor in Eq. 1
A Biot number
m Defined in Eq. 56
Nu Nusselt number
r Dimensionless distance
, r at the collocation point
t Dimensionless time
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t Timeat A =0

u Dimenstionless temperature

u Surface temperature

u Average temperature

u u at the collocation point

Greek Letters

o Defined in Eq. 26

B Defined in Eq. 28

A Dimensionless distance of the inactive zone

Introduction

The transient heat conduction problem has been treated by several investigators [1-7] who
were secking approximate analytical solution for it. On the other hand, its numerical solution
is well established through finite difference, finite element and orthogonal collocation
methods [8].
u

In this paper through the judicious choice of the collocation point and taking into
consideration the steep profile at initial time, a one-point collocation method is used to
obtain an approximate analytical solution which compares well with the numerical solution
and other approximate solutions.

Although the problem has an analytical solution in the form of an infinite series, this
solution requires a large number of terms for the short time and requires obtaining
eigenvalues by the solution of transcendental equation. Another form for the solution is in
terms of error function which is not convenient to use. In addition establishing an
approximate solution for a linear problem could be the first step for doing the same for a
non-linear problem.

Mecthod Development

The dimensionless temperature profile u along the dimensionless distance r in the one
dimensional transient heat conduction problem is represented by

Bu_d%u adu
a Tt M
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with the initial condition at

t=0,u=0forre[0, 1] )
and the boundary conditions;
B Gatr=0120 (3)
or
%=A(l—us) atr=11t>0 Q)]

where ug is the surface temperature, i.c., ujy=1,a=0fora slab, a=1foracylinder,a=2
for a sphere and A is the Biot number.

The average temperaiure  is defined by
1

u=(a+1)[r* udr 5)
0

We present here a one point collocation method that would lead to an approximate analytical
solution. The method will be based on the dead zone concept [7, 9, 10] for the steep profile
which occurs at the initial time.

For the one-point collocation, the temperature profile will be initially a sharp profile,
thus we can divide the distance to an active zone and a dead zone. We will have
-2

2 -
u = ug (1—7&] for A<r<l (6)

and

)

n=10 for 0<r<a

Att=0, A = 1 and as time progresses we reach a situation where A =0. At this instance, u
= ugr2 forr & [ 0, 1]. This will be the initial condition for a standard one point collocation
as will be illustrated later. In the sequel, we will obtain expressions for determining A,

optimum collocation point, the temperature profile, the surface temperature and average
temperature.

Substituting expression (6, 7) in the boundary condition, Eq. 4 and the average
temperature Eq. 5, we will have
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Gon=All-ug
or
S S
: [14‘_‘?_&___‘] (8)
A(—R)
2 .
ﬁ:(a-i—l)'[:raus[::;j dr ©)

For an integer value of a, this expression leads to

N ¢ o 5 T~ T 10
T=u, (a+2)(a+3)§(:+2)(1+1)x |

Foraslab, a=0,

F=u, (1-3) (1)
3
For a cylinder, a=1,

-, (1—x)éx+3) 12

For a sphere, a =2,

_ 1-ANA? +3A+6
u=us( X - )

(13)

Substituting equations (6, 8) into the partial differential equation (1) we obtain

2A(r—A)(A- A2+ AA-A) - (= A(1+A(I-1)) d(1-1)
(1-0)22+A(1-1)? dt
) 24 [“ a(r-k)] (14)
(1-A)2+A(1-1))

T
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This equation is to be satisfied at the collocation point r=r (1-A)+A. Thus we have

d1-2) _ [2+A(1- ][ty (1-A)(1 +2)+2]
dt  LA-M2-1,)+A(l-1)(1- A5 (1-A)+ A] (15)

or written in another way as

d(1-2  2A2+A(-M)]n(1-1)(1+a)+A]
dt  n[C2-n)+Ad-r)0- D=1+ 2

(16)

Although Eq. 16 can be integrated analytically, the solution will not be explicit in A.
So we either solve it numerically or try to obtain an approximate solution for A. In addition
we have to use an optimum value forr,.

The first approximation is obtained as follows:

For the case of aslab (a=0) andas A —» <0

di-xP? 2
&t (1-n)y a7
or
2t
1-M) =
(1-2) ni-t) (18)
as A—>20
dii-r> 4
&t 2-nr (19)

Combining Eq. 17 and 19 in a form that depends on A and have the same solution as
A 50 and A — 0 we obtain

di1-AJ? _ 2

(1 (AT2) 1'1]rl (20)
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-2]- |2t
Jrl(l— (A+1) rl) (21)
(A+2)

This expression is extended through comparing numerical results with exact results for
any shape to give

{ 2t 2t 1+l.5AJ

\!r'[“ﬁ(‘%)} o rl[l*rl(%n( e

The second approximation is obtained by substituting for (1 - A} from Eq, 18 in the right
hand side of Eq. 15 and then integrate to obtain

_ (1—(a+1)r1)d _rl[(l—rl)A +(2-)X1-(a+1)r )]

-4, = (22)

1-4], =
(=L (1-5) AQl-1)?(A+2-1)
__an(2-2r,+A) (23)
In(1+d,d,) (1-r1)2(A+2-r1)1“(1+d‘d’)
where
[
" Ynd-r)
_A(d-r)
2 @-r)
dy=—(1-r)

The third approximation is obtained by substituting for (1 - ) from Eq. 18 into Eq.
16 to obtain after integration

[1Af - (1-@+Dn) 2 20[(1-1)A+Q2-n)1-@+hn)]

(1-r) All-1)* (A+2-1,)
~ In(l+dd
2an,Q2-2, +A)[d. ——“——da—)) 24)

[d1 w1n(1+d,dz)]_

d, S (-n)*A+2-1)
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Comparing numerical results with exact results has shown that Eq. 23 is good for large
A while Eq. 24 is good for small A. .

Thus we combine both expressions into the following:
[(1— L), ““A(l“?*-)z]
(1+A)

Now the optimum value for r; is obtained as follows:

[1-Al, = (25)

For short time and for the case of a slab, the following asymptotic solution for {can
be obtained from the asymptotic results of Martin and Saberian [1] as,

= 1
, Vi +3a4/nt) 26)
A "W 10aVD)

Our collocation analysis gives the following expression for U

__u(l-3)  (a-a)?
BT Z30-a)+6/A @7

Substitution from Eq. 26 into Eq. 27 we obtain a quadratic equation in (l-l) which gives
the solution \\
\
i 30 +,/%7 + =—— 240
1-A)=—= (28)
(1-» 5 >

substituting from Eq. 28 into Eq, 21, we obtain

(1+A)
1-8 2+A
[ Bt Ay |2 A) o

2(1+A)

4t 1 n 2n
As A , "—, — — -‘/ -—I
sA—>o, a— - [3-—>3a—)- Tor and r,—)(l 1 5 /2 (30)

1'1=
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V3

As A =0, a—At, B—)L r-—>1-— (31)

Jot 3

For small time the expression inside the square root could become negative. In this case,
r) is given by

- Z+A
' 201+ A)

(32)

As A becomes zero the inactive zone disappears and we will have just one zone for
which standard collocation can be applied. The collocation point is taken as suggested
by Villadsen and Michelsen [7] to be A-dependent as

2 (a+1)}A+a+5)

LT @ +5)(A1a+3) (33)
At the instant of switching from the two zones into one zone, we will have
i 1
Toe2 (34)
A
u= 1‘2
=— _ S
1+— (33)
A
and
— (a+1}A
b= (36)
(a+3)A+2)
As time increases, define
(r? -1}) (rzkl]
] u. + u
(lfftz) ; 1'12 -1 57
where u, is the temperature at the collocation point ry, 7 is then given by
1y 2
u =(a+l)Ira udr= L (a+h (a2+3)rl u, + 21112 (38)
(a+3) (1-17) (1-17)
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At the collocation point, Eq. 1 becomes
du,  Z(a+1)(u, -u,)
dt (1-17)
and Eq. 4 becomes

Sl o2 ) =AG-u) = —

drf,, (1-12) @+)) dt
Therefore
du,
—L = (a+ DA -
m (a+DA(1-uy)
du, (@+1}(l-uy)
I _——l—rlz 1 =(a+1)A(l-u,)
2 A
Thus
(1-uy)
u, =1- Z
4o,
2

=(t-t;)
2 2 IRl
o, = Arj +(2‘”"(1”1 )i 1_g 2(+D)  Ata+l)
Lo A+2 A+2

-(t-t,)
1-1f 1
A + 2 l-e 2{a+1) +A(a+1)
(A+2) (A+2)

8 -

where tg is the time at which A =0.

From Eqs. 38, 43-45, we obtain:

171

(39

(40

(41)

(42}

(43)

(44)

(45)
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A
ﬁ-]_(l “1)(1+(a+3))
-2 46
(1+(1 I )A) (46)
2
and
_(l"lo)
l—r,2 1
Tm (a+DA + 2(A+a+3) l—e 2+l AGtD
(a+3)A+2) (a+3}A+2) . (47}
Substituting Eq. 46 into Eq. 42, we obtain
&8 _ (a+1)(1-9)
¢ 1-r 1 (48)

2 A
We notice that asA >0, U= u, =20, u,->u, =0

Comparison with previous work

The application of the method of moments {7] to Eq. 1-4 would lead to the following
expression for the average temperature

_ (a+ 1)t
u=1-exp I 1 (49)
A (a+3)

For short time the true average is lower than that calculated from Eq. 49 whereas for
long time it is higher. Thus expression (49) is generally not accurate enough.

Higher accuracy for long time is obtained through Eq. 47 derived in this paper.
On the other hand Dixon [6] developed an expression similar to Eq, 42 for the case of

a cylinder and instead of using Eq. 38 for calculating the average temperature, he used the
approximation p
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Tzw, (50)
This makes his results less accurate specially for large A.

Harriott [2] obtained the following expression for the case of asphere and A - «
n=yl-e™® (31)

This expression has an overall accuracy better than Eq. 49 but still less accurate than
Eq. 47 for long time,
Martin and Saberian [1] obtained an expression of high accuracy given by

= -{a+ )t
s (52)
A Nu(t)
where
,b=0.2
Nu(t) = yNu?, -b? +(Nu, +b)? (53)
Ny, o YR +10AV (54)
* 7 Ji(1+5A4xt)
+3+A
Nu, = a(a—-l-l)A (55)
1+ 3
m
n
2 slab
m=+424048 cylinder (56)
x sphere

This expression satisfies the short time and long time asymptotes. Better values for m?
are the collocation weights 2.5 for a slab, 6 for a cylinder and 10.5 for a sphere.
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In this paper we developed short time and long time expressions which will be compared
with Martin and Saberian {1] expressions in the next section.

Numerical Results

The numerically exact solution for equations (1-4) is obtained through the application
of standard orthogonal collocation method { 7] using 16 collocation points, Four approximate
solutions are compared with the exact solutions; for short time, together with Eq. 6-13 the
approximate solutions for A, the dimensionless distance of the inactive zone, given by the
(i) numerical solution of the differential Eq. 16, (ii) equation (22), (iii) Eq. 25 with the long
time solution given by Eq. 43, 44, 46. The switching time ty from the short time to the
long time solution occurs when A = 0. The fourth approximate solution for comparison is
the one derived by Martin and Saberian [1](Eq. 52-53). In Tables [1-3], we compare the
integral of the square error I given by

1
2
1= .|- [ﬁapproxinme - ﬁexnct] dt (57)
u .

for the four approximations.

Table 1. Comparison between integeral square error for the approximate solutions for the case of 2
slab (a=0)

A 1" Approximation 2™ Approximation 3™ Approximation  Martin and Saberian
Eq. 16 Eq. 22 Eq. 25 Approximation

0.1 1.66x% 1077 3.512x 108 4,745 x 108 6.944 x 108

1 2.5546 x 103 5.0905 x 1077 9.5528 x 1073 7.8169 10%

10 1.8298 x 10 3.0487 x 1073 1.8089 x 107 1.1642 x 107

100 1.9827 x 10°% 90135 x 106 1.7292 x 1073 23113 x 104
1000 7.2232x 108 6.7316 x 10° 72778 x 107 2.5184 x 104
10000 6.6079 x 105 6.5659 x 10 6.6287 x 10 2.5404 x 107¢

Table 2. Comparison between integeral square error for the approximate solutions for the case of a2
cylinder (a=1)

A 1™ Approximation 2™ Approximation 3" Approximation  Martin and Saberian
Eq. 16 Eq. 22 Eq. 25 : Approximation

0.1 43404 x 106 2.1001 x 10°° 4.4994 x 10 29022 x 167

1 4.6450 x 10°° 4.1509 x 107> 4.5035 x 106 0.2794 x 10°¢

10 1.3496 x 104 23763 x 105 6.3526 x 10°° 4.6063 x 10°*

100 3.0465 x 107 2.5136 x 10°3 1.8476 x 10°° 23113 x 1073

1000 1.8984 x 1073 23338 x 107 19325 x 1073 90160 x 1077

10000 1.8509 x 10-% 23174 x 1075 2.005 x 107 9.1186 x 1073
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Table 3. Comparison between infegeral square error for the approximate solutions for the case of a
sphere (a=2)

A 1%t Approximation 2" Approximation 39 Approximation  Martin and Saberian
Eq. 16 Eq. 22 Eq. 25 Approximation
0.1 1.0856 x 1075 45867 x 10¢ 56463 x 10 85852 x 107
1 2.2866 x 104 £.4376 x 1075 1.2100 x 108 14700 x 103
10 1.6387 x 107t 42543 x 10°F 9.5589 x 108 37592 x 10°F
100 6.5906 x 10°% 50170 x 108 3.9699 x 1005 5.0728 x 10°8
1000 42956 x 105 4.7643 x 105 3.2992 x 1075 53951 x 10°5
10000 4.1643 x 10°F 4.7368 x 107 3.2551 x 10° 54374 x 10°F
1.00

Cylinder

A=10

——  Numerical Exact Solution
14t Approximation eq. 16
2nd Approximation eq. 22
3rd Approximation eq. 26
Martin & Saberian Approximation

o
S
|
*+ 0

0.00

[ T ! l ! 1 !
0.00 0.20 0.40 0.60 0.80 1.00
t

Fig. 1. Comparison of average temperatures for different shapes.
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1.00
0.80 —
0.60 —
;.l- —
A=1000
0.40 —
——— Numerical Exact Solution
A 1st Appraximation eq. 16
@®  2nd Approximation eq. 22
0.20 —| =  3rd Appraximation eq. 25
' “* Martin & Saberian Approximation
000~ T T
0.00 0.20 0.40 0.60 0.80
[}

Fig. 2. Comparison of average temperatures for different shapes.

1.00
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1.00
0.80 — /.’
0.60 —
. /./ Slab
0.40 —
§ A=01
———  Numerical Exact Sclution
0.20 — A {st Approximation eq. 16
9 2nd Approximation eq. 22
_ s  3rd Approximation eq. 25
w Martin & Sabarian Approximation
.00 — T | T | T } T
0.00 2.00 400 6.00 8.00 10.00

Fig. 3. Comparison of average temperatures for different shapes.



178 M.A. Soliman and A.A. Ibrahim

1.00

A =08, 0.000%0

0.00 0.20 0.40 " 050 0.60 1.00

Fig. 4. Temperature profile for transient heat conduction.
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1t is noticed that the second approximation has the best overall performance whereas
that of Martin and Saberian is not as accurate for large A. Figure 1 compares the average
temperature change for the case of A = 10 and different shapes. Again the second
approximation shows the best performance. Figure 2 shows the same trend for the case A
=1000. For small A ( A =0.1). Fig. 3 shows that it needs longer time to reach steady state
since the heat flux at the surface is smaller. Table 4 gives the value of the collocation points
for different time and A whereas Fig. 4 gives the change in u with time and distance during
the two zones period and the one zone period. It is indicated on the same figure the value
of u at the collocation point (u;) and the average u {1 ). When A = 0, the collocation point
and hence u; changes.

Table 4. Values of collocation points for the case of 2 slab (a = 0) and A = 10 for different time and A

A t r, two-zome r, one-zong

0.8 0.0066 0.4429

0.6 0.0225 0.3562

0.4 0.0464 0.3215

0.2 0.0778 0.3015

0.0 0.1166 0.2882 0.4804
Conclusions

Using a one point collocation method, we are able to obtain accurate approximations
for the average temperature. The second approximation represented by Eq. 22 for short
time and Eqs. 43, 44, 46 for long time is particularly simple and more accurate than other
approximations. The success of the method is mainly due to the proper selection of the
collocation point which is chosen using the asymptotic solution for short time and using an
A dependent collocation point for long time,
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Engineering, King Saud University, Riyadh, Saudi Arabia for its support of the project.
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