
1. King Saud Univ .• Vol. 12, Eng. Sci. (I), pp. 1-14 (A.H. 1420/2000) 

Studies on the Method of Orthogonal Collocation IV. 
Laguerre and Hennite Orthogonal 

Collocation Method 

M.A. Soliman 
Department afChemical Engineering. College of Engineering, 

King Saud University, P.D. Box 800, Riyadh 11421, Saudi Arabia 

(Received 19 May 1998; accepted for publication 19 October 1998) 

Abstract. Differential equations for which the zeros of Laguerre and Hermite polynomials are suitable 
collocation points are identified. It is shown that the equations representing tubular reactors with axial 
dispersion can be solved efficiently using the zeros of Laguerre polynomials to obtain the inlet concentration. 
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Nomenclature 

Constant 
Damkohler number 
Hermite polynomial of nill order 
Laguerre polynomials of nill order 
Peelet number 
Dimensionless rate of reaction 
Dimensionless distance or independent variable 
Dimensionless distance or independent variable (y = Pe x) 
Dimensionless concentration or dependent variable 
Dependent variable 

Introduction 

The choice of collocation points for the solution of boundary value problems by the 
collocation method is very crucial if it is desirable to solve the problem using a low order 
polynomial. The zeros of orthogonal polynomials generally give better results 
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than equally distributed collocation points. Villadsen and Michelsen [1] give the proper 
Jacobi polynomial for certain boundary value problems representing diffusion with 
chemical reaction in a slab, cylinder and sphere. Although, the zeros of Laguerre 
polynomials and Hermite polynomials are suitable for use in collocation methods for 
semi-finite and infinite domain differential equations [2] no attempt has been made to 
identify the type of equations for which this choice is optimal. 

Reference [3] indicated the type of equations for which Jacobi polynomials are 
suitable for their solution by the orthogonal collocation method. Here we give the type 
of equations that can be solved efficiently by Laguerre and Hermite polynomials. It is 
shown in this paper that tubular reactor equations are a special case of this general form 
of equations solvable by Laguerre polynomials. 

Orthogonal polynomials 

Two classes of orthogonal polynomials will be of interest in this paper. The first 
class is Laguerre polynomials L,(y) which satisfy the orthogonality condition, 

f e-Yy"Ln(y)Lm(y)dy=O, 

o 

'" 0 
Y E [ 0, ~) 
a > -1 
m=1,2, ..... n 

m '" n 

m = n 
(I) 

The second class is Hermite polynomials H,(y) which satisfy the orthogonality condition 

m", n 

'" 0 
m n 

yE (-~,~) (2) 
m = 1,2, .... ,n 

Laguerre orthogonal collocation method 

In this section we give the general form of equation for which Laguerre 
polynomials are most suitable. In addition we give formula for interpolation, first 
order derivative, second order derivative and Laguerre quadrature weights for one 
and two points collocation method. Laguerre polynomials satisfy the differential 
equation 



or 

where 

Define 
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v = L.(y). 

N 

u=uo+YL aiLi(y) 
i=O 

and construct the differential equation 

or 

d 2u (<x-J-y du ( ) (cy+l-<x+y) --+ )-+ u-u 
dy2 Y dy 0 y2 

where u(O) = Uo 

3 

(3) 

(4) 

(5) 

(6) 

(7) 

This is the general form that can be solved efficiently using the collocation method 
where the N collocation points are the zeros of Laguerre polynomials LN(Y). This is due 
to the fact that the solution at the collocation points makes the left hand side and the 
right hand side of the equation independent of aN when we substitute the polynomial 
solution u(y) (equation (5» on both sides. In addition the following integral 

1= f e-Yya-lu(y)dy (8) 
o 

evaluated at the zeros of Laguerre polynomial LN(y) will not depend on aN. Thus we 
expect that this Laguerre quadrature will be accurate for u(y) given by equation (5). 
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We give here the Lagrange interpolatiori formulae, first order and second order 
weights and Lagnerre quadrature weights for one and two points collocation method. 

(i) One point collocation method 

L,(y) = (a+ I) - Y 

y, = I + a 

u(y) -(Y-Yl)uo+yul 
I+a 

MI 
dYly=y, 

(ii) Two points collocation method 

Let b =2+a 

L,(y) = y' - 2by + b(b-I) 

y, = b - .Jb ) 

) 

y, = b + .Jb ) 

(zero of L,(y)) 

( zeros of L,(y) ) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(\7) 

(y - Yl )(y - Y2) (I +.Jb)y(y - Y2)Ul (l-.Jb)y(y - Yl)U 2 
u(y)= b(b-I) Uo - 2b(b-l) - 2b(b-l) (18) 
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dul 
dy Y=YI 

= [2b+(3-b)Jbl (u -u )+ [(I + b)Jb -2bl (u -u ) 
2b(b-l) I 0 2b(b-l) 2 0 

(19) 

dul = [2b+(l+b)Jbl (u -u )+ [2b-(3-b)Jbl (u -u ) (20) 
d 2b(b-l) I 0 2b(b-l) 2 0 
Y Y=YZ 

(21) 

~J a-I -Y [2 (b-2)(I+b+2Jb) 
y e udy= b(b_l)u o + 2b(b-l) ul 

o 

+ (b-2)(I+b-2Jb)u ]rra) 
2b(b-l) 2 

(22) 

Programs are available for calculating zeros of Laguerre polynomials, derivative 
weights and quadrature weights, see for example reference [4]. 

Another form of equation for which Laguerre polynomials are most suitable can be 
obtained if we have the following boundary conditions, 

ul,==u(o), u--+O asy--+= 

We replace u(y) bye' u(y) in Eq. (7) to obtain 

d 2 u (a-I+Y)du a-I ( (0) -Y) (cy+l-a+y) --+ -+-- u+ u-u e 
dy2 y dy Y y2 

with u(y) given by 

u(y) = Uo e-' + y e-' ~ a, L, (y) 
The following integral 

(23) 

(24) 

(25) 
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° 
can be integrated accurately using Laguerre quadrature. 

Hermite orthogonal collocation method 

Hermite polynomials H.(y) satisfy the differential equation 

or 

where 

Define 

d 2 v dv ---2y-+2nv=0 
dy2 dy 

v = H.(y) 

N 

u = u, + Y L aj H;(y) 
i=O 

and construct the differential equation; 

or 

u-u 
d(--O) 

Y u-u 2 
2y d +c(-_o)=$ u 

y y 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

This is the general form for equations that can be solved efficiently using Hermite 
polynomials. 

The following integral will be evaluated by Hermite quadrature, 
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~ 

1= J e -y2 u(y)dy . (33) 

Since the zeros of odd order Hennite polynomial include y = 0, we need to obtain the 
limit of equation (32) as y --> O. This is 

(34) 

If in addition to the condition that 

u(O) = u" (35) 

we have 

U ---7 0 as y ---7 ±... 00 (36) 
2 

we can replace u by e Y u in Eq. (28) to obtain 

(37) 

with u given by 

u = 
_y2 N 

e [u,,+y L a;H,(y)] (38) 

i=O 

and as y --> 0, the differential Eq. (37) becomes 

(39) 

The following integral will be integrated using Hermite quadrature 

~ 

I = JUdY (40) 
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The use of one point and two points collocation method for problems that will be 
solved at the zeros of Hennite polynomials require the evaluation of the following 
weights for derivatives and quadrature. 

(i) One point collocation method 

(41) 

y, = a (zero of H,(y) ) (42) 

u(y) = u, + ay (a is a constant) (43) 

dlll =a, d2~1 =0 
dy] Y=y\ dy Y=y\ 

(44) 

(independent of a) 

(ii) Two points collocation method 

H,(y) = 4 y' - 2 (45) 

y, = .J2 
2 

(46) 

y, = -.J2 
2 

(47) 

u(y) = (1 - 2y') u, + y (y - y,) u, + y (y - yil u, (48) 

(49) 

(50) 
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(51) 

(52) 

Applications 

In this section we give two examples for the application of the method developed in 
this paper. In the first one, we show how Laguerre orthogonal collocation method can be 
used to obtain the inlet concentration of tubular reactor with large axial dispersion 
accurately. In the second example we apply Hermite orthogonal collocation method. 

Example 1: Tubular reaction with axial dispersion: 

The describing equations for an isothermal tubular reactors with axial dispersion is 
given by; 

(53) 

with the boundary conditions; 

-..L.!!!!.I ; u( 0)-1 
Pe dx x=o 

(54) 

and 

duJ ;0 (55) 
~X=l 

We are mainly interested here for the case of large Pe (Pe ....., =). We use the 
transformation 

y ; Pe x (56) 

Substituting Eq. (56) into Eqs. (53-55), we obtain 
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(57) 

with 

<h!l =u(o)-I= Da j e-YR(u)dy 
dYly=o Pe 0 

(Pe --7 ~). (58) 

and u is finite as y ~ 00 • 

If we substitute IX = I, c = -I in Eq. (7) we obtain 

(59) 

which is the equation of a tubular reactor with a first order reaction. 

Equation (57) is a non-linear version of Eq. (59) and thus we expect that 
Laguerre quadrature will accurately determine the integral in Eq. (58) where u is 
obtained by the solution of Eq. (57) using the zeros of Laguerre polynomials as 
collocation points. 

Applying the one-point collocation method for the linear case (R(u) = u) we will 
have from Eq. (57) 

where 

o 

From Eq. (58) we have 

Therefore 

1+2DP 

DP=Da 
Pe 

(I+DP)u o 
(I +2DP) 

DP(1 + DP)u 0 

(I + 2DP) 

(60) 

(61) 

(62) 

(63) 
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(I +2DP) 
(64) 

For the case of Da = 2, Pe = 100, uo = 0.9808. 

This is the exact analytical result for four significant figures. The exit concentration 
(at y = Pe) is negative. We can however improve on the exit concentration if we use y = 
Pe as extra collocation point or if we increase the number of collocation points. It was 
shown in reference [5) that if we use the zeros of the proper orthogonal polynomials as 
collocation points an extra collocation point at any position will not affect the solution at 
the other collocation points. 

In Table 1, we give a comparison between the results of the exact analytical solution, 
the two points standard collocation method using Legendre polynomials and the two 
point Laguerre collocation method with the exit point as extra collocation point. The 
zeros of Legendre polynomials are symmetric around the center of the reactor whereas 
the zeros of Laguerre polynomials are close to the entrance of the reactor. Thus we 
notice high accuracy of the concentration near the entrance of the reactor with Laguerre 
method whereas the concentration is more accurately calculated with the Legendre 
method near the reactor exit. 

Table 1. Concentration profile (u) with different methods 

Analytical Legendre Laguerre 
x solution collocation collocation 

u u u 

0.0 0.9808 0.9833 0.9808 

0.1 0.8061 0.8245 0.8063 

0.2 0.6626 0.6825 0.6646 

0.3 0.5444 0.5571 0.5513 

0.4 0.4476 0.4485 0.4622 

0.5 0.3677 0.3565 0.3927 

0.6 0.3023 0.2813 0.3387 

0.7 0.2484 0.2228 0.2957 

0.8 0.2042 0.1811 0.2594 

0.9 0.1679 0.1560 0.2254 

1.0 0.1406 0.1476 0.1893 

For the non-linear case R(u) = u2
, also one point collocation gives accurate result for 

llo(0.9814). 
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Example 2. 
We apply the one and two points collocation on Eq. (32) to obtain: 

One point collocation 

2 
u(y) = uoO+Ly) 

c 

Two points collocation 

3 b = ~"--oc-
c(c-2) 

I = 

(c "" 0) (65) 

(66) 

(67) 

(68) 

Due to the possibility of the the denominator becoming zero in value of the the 
integral I in Eq. (68), it is probable that the Hennite method is more efficiently applied to 
Eq. (32) with the value of c = I. In this case b = -3 and denominator will not be zero. 

Conclusions 

In this paper the differential equations that can be solved efficiently using a collocation 
method where the collocation points are zeros of Laguerre and Hermite polynomials are 
identified. Two examples were worked out to show the application of the method. 
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