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Abstract. A two-phasc model of a non-isothermal fluidized bed catalytic reactor with consecutive exothermic
reachons A—» B —» C 1s used to mvestigate the dynamic characteristics of this industrially impottant unit
when it is periodically forced. The investigation concentrates on forcing a periodic regime of the autonomous
system with a relatively high forcing frequency. It is shown that by periodic foreing of the feed temperature,
chaolic 1egimes occur for smal! amplitudes of forcing. For constant frequency and with the change in the
forcing amplitude the behavior af the unit alternates between periedic and chavlic regimes via period doubling
and period adding mechanisms. When on the other hand the amplitude is fixed chaotic regimes alse appear
for small changes in the forcing frequency. The effects of these parametric perurbations on the yield of the
desired intermediate product B is also investigated. It is shown that the yield can be improved by an appropriate
sclection of the foreing frequency.

Nomenclature

©

dimensionless two-phase parameter

>
A

cross-sectional area of the bed occupied by bubble phase {cm?)
w  dimensionless forcing amplitude

volumetric gas flow rate in bubble phase (m3s!)

volumetric gas flow rate in dense phase (m?s'l)

expanded bed height for the fluidized bed (cm)
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K, dimensionless proportional gain

K; dimensionless integral mode gain

Le;  Lewis number of component i (heat capacity/mass capacity of component i)

Qg  mass exchange coefficient (s1)

t normalized time

X,  dimensionless dense phase concentration of the reactant A

Xy  dimensionless dense phase concentration of the product B

X,  dimensionless feed concentration of component i

Xgy dimensionless bubble phase concentration of B at the exit of the Teactor

y yield of the intermediate product

Y dirmensionless dense phase temperature

Y,  dimensionless feed temperamre to the reactor (base value)

Y,  dimensionless set point of the controller

¥r dimensionless feed temperature

w,  dimensionless forcing frequency

w,  dimensionless natural frequency of the center of forcing chosen for the amplitude forcing.
w, dimensionless natural frequency of the center of forcing chosen for the frequency forcing
Greek symbols

a, dimensionless pre-expenential factor for A— B
a,  dimensionless pre-exponential factor for B— C
By dimensionless overall exothermicity factor for A5 B
B,  dimensionless overall exothermcity factor for B— C

B reciprocal of the residence time of the bed

1 dimensionless activation energy for A—» B

¥, dimensionless activation energy for B— C

$; dimensionless effective mass capacity of the component i
Abbreviations

HB  Hopf bifurcation point
PD  period doubling point
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Intreduction

Chemically reactive systems are known to exhibit a variety of complex static and dynamic
behavior depending on the values of system operating parameters, An autonomous model
of a chemical reactor can exhibit simple or complex oscillations as well as chaotic behavior,
The effect of feed changes on the dynamics of chemical reactors on the other hand can be
of significant importance. In fact the interactions between the feed inputs and the
nonlinearities of the reactor are quite relevant, since in real processes, feed conditions are
generally time varying. The study of the dynamics of the non-autonomous system can,
therefore yield significant results on the performances of the real physical process.

The periodically forced lumped parameter reactors have been extensively investipated
in the last few years [1-7]. Manokin and Husdon [8], for instance, studied the case of the
CS1R. with a single irreversible reaction using the coolant temperature as the forcing
variable. The authors showed the complex transition from quasi-periodic to chaotic
behavior in the periodically foreed reactor. The same system was studied in a more elaborate
way by Kevrekidis et a/. [1] using the two parameter (amplitude and frequency) excitations
diagrams. Tambe and Kulkarni [9] studied a low frequency forcing of a chemical reactor
and exarnined the resulting complex transition from periodicity to chaos through
intermittency. Elnashaie and Abashar [7] on the other hand investigated the chaotic behavior
of the forced fluidized bed reactor using a relatively simple two-phase model.

The results of these studies point out clearly 1o the complex dynamic behavior of the
periodically forced chemical reactors and also to the unpredictability of the results
associated with these parametric perturbations. Dramatic changes can be expected in the
nature of the emerging dynamic attractors,

In this paper we investigate the periodic forcing of a three dimensional model of a
non-isothermal fluidized bed reactor with consecutive catalytic reaction network A > B
—» C. The desired product is the intermediate component B. A schematic diagram of the
reactor is shown in Fig.1, The autonomous system is known to exhibit steady state
multiplicity as well as simple and complex oscillations [7]. By forcing a periodic regime
of the autonomous system we will examine simultaneously the mechanisms of transition
between periodic and chaotic regimes in the forced syster as well as the effects of forcing
on the yield of the intermediate desired product.

Previous work

The dynamic behavior of the autonomeus model of a non-isothermal fluidized-bed
reactor with the catalytic exothermic reaction A — B —» C was investigated by Elnashaie
and co-workers [10,11]. The states used to describe the reactor model are the concentrations
of the reactant A and product B, and the temperature of the reactor dense phase,
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Fig. 1. Schemalic diagram of the two-phase medel of the fluidized bed reactor.

The autonomous i.e. unforced system is known to ¢xhibit steady state multiplicity.
The model investigated in this paper has three steady states, a low temperature (quenched)
steady state, a high temperature (burn-out} steady stale and a third steady state which is
the desired operating point as it occurs at a physically realizable temperature and
corresponds to the maximum yield. Since this desired steady state is unstable (saddle
type} a feedback control system is needed for the operation of the reactor.



Dynamic Characteristics of a Periodically ..... 53

It is worth mentioning that this situation has practical industrial applications. Industrial
fluid catalytic cracking (FCC) units are generally operated at the unstable steady state that
gives maximum gasoline yield [12]. Other examples of the occurrence of this situation in
petrochemical reactions are the partial oxidation of o-xylene to phthalic anhydride [13]
and the oxidative dehydrogenation of ethylbenzene {o styrene [14].

Eashaie and Abashat [7] investigated the chaotic behavior of the periodically forced
reactor with a simple proportional controller using 1 two dimensional model which neglects
the fast dynamics of the intermediate product. The authors showed that period doubling
and chaos occur for very small amplitudes of external forcing. Various mechanisms of
transition between periodic windows and chaotic regimes were observed and analyzed.

In the present paper the original three dimensional system is investigated when it is
under a conventional proportional-integral {PL) controller and when the feed temperature is
periodically forced. The continuity diagram of the PI controlled reactor is shown in Fig. 2.
It can be seen that the integral mode of the controller destroys the steady state multiplicity.
The continuity diagram of the system shows one static branch that corresponds to the desired
steady state. The integral action on the other hand induces interesting dynamic characteristics
in the system including transition form simpie to complex oscillatory behavior via period
doubling bifurcation, intermiltent chaos and period adding bifurcation [15].
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Fig. 2. Bifurcation diagram Y vs K¢ when the reactor is under proportional-integral control. The
integral mude gain is Ki = 0.85. Stable periadic attractors emanating form the Hopf peint (HB) lose
their stahility through period doubling (PD) bifurcation.
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A portion of the Poincare bifurcation diagram (intersection of the trajectories with a
fixed hyperplane) is shown in Fig.3(a). The system alternates between chaotic regimes
through period adding bifurcation i.e. the period of the system increases with the controller
proportional gain.

The effects of forcing a periodic attractor of the autonomous system is investigated in
this paper. The center of forcing is 2  period-§ attractor corresponding to Kc =3.810 as
shown in Fig. 3(b). The natural frequency of the system at the center of forcing is wo =
0.0210832235, High accuracy is required for the determination of the natural frequency
because its value affects the location of forced subharmonics. A shooting method [16]
was used for this purpose.

Before the results of the investigation are discussed we present briefly the model used
for the reactor. The detailed assumptions and the mathematical derivation of the model
were presented by Elnashaie er af. [10,11].

Mathematical Model of the Reactor

The bubble-phase mass and heat balances equations are assumed at pseudo steady
state because of negligible mass and heat capacitics. The equations for the dense phase
materials and energy balances in dimensionless form are given by the following three
nonlinear differential equations

1 dX —
E th =B(XAr*XA)*“13’(P[*%jXA, M
1 dX = Y ¥
e A I o AL o L
d—v=ﬁ(? ~Y)+o,p exp(-—y—'JX +o,p cxp(fy—z)x (3)
m r B4 =y ) Ka b v )X

X,, Xy represent the dimensionless concentrations of components A and B, and Y is the
dimensionless dense phase temperature. Y is the set point corresponding to the
dimensionless dense phase temperature giving the maximum yield and Y, is the base
value dimensionless feed temperature (whenY =Y ). The PI controlled reactor is described
by the equations above and the following control law where the feed temperature y,,
chosen as the manipulated variable, is related to the error (Y, - Y) through a P1 controller
with proportional gain K and integral mode pain K;

Yo = Ye + Ko (Yo - V) <K, [ (Y0 - V)t (4)

When the reactor is periodically forced the control law (Eq. 4) takes the following form
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Fig- 3. (a) Poincare map {intersection of trajectories with the hyperplane XB = 0.6313) of the PI
contrelled reactor, The integram mode gain is Ki = 0.05. (b) Enlargement of Figure 3(a} showing the
period-8 attractor (Kc = 3.810) chosen as the center of amplitude forcing.
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Y}=(Yf+Amsinm)+Kc(Ym—Y)+Ki£(Ym—Y)dt O]

where A and w are respectively the forcing amplitude and frequency, The unforced
system is obviously the limiting case of the forced system as the forcing amplitude (or
frequency) goes to Q. The rest of the model parameters and the data used in the mvestigation
are given in Table 1.

Table 1. Data used in the model

Nurmalized pre-exponent factor {or the reaction A — B, «, 108
Normalized pre-exponent factor for the reaction B — C, a, 1"
Lhimensionless overali exothermicity factor for the reaction A —» B, i, 0.4
Dimensionless overall exothermicity factor for the reaction 8 — C.j, 0.6
Dimensionless activation energy for the reaction A — B, y, 18.0
Dimensionless activation energy for the reaction A — C. vy, 27.0

Lewis number of component A, L::A 1.0

Lewis number of component B, Le, 0.454545
Feed concentration of component A, 3, 1.0

Feed concentration of component B, X 0$
Dimensionless feed temperature to the reactor (basevalue), Y, .55342072
Set point for the controller, Y {.92955130
Reciprocal of the effective residence time of the bed, B 0.12543050
Dimensionless proportional gain, K 31810
Dimensionless integral mode gain, K; 0.05

The yield (y) of intermediate product in the reaction network A — B — Cis given by [10]

_ Gy Xp+Gc Xt

(3
(G +Gc) Xy ©
where
Xon = Xp+(Xgr-Xgle N
and
2o QeHAC (8)

Ge

The two phase model used in this investigation has been used successfully to simulate
type IV industrial fluid catalytic cracking units [17-19].
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Results and Discussion

The forcing frequency used in this investigation is relatively high. The ratio w/ w, of
the forcing frequency io the system natural frequency is taken to be a rational value cqual
to 5. Therefore at low amplitude of forcing we expect the phase trajectories of the system
to lie on a three dimensional torus and an entrainement region to prevail. It is known that
the possible attractors for periodically forced systems are periodic, quasi-periodic and
chaotic attractors, When the forced system is periodic its period is an integer multiple of
the forcing period. The investigation of the periodically forced system is suitably carried
out using a Poincare map. The phase projection of the trajectories are inspected at specific
times t, which are multiples of the forcing period i¢. t, = m(2n/w,). This is alse called
stroboscopic technique for obvious reasons. Transient motions appear as scattered dots
on the map while the emergence of a periodic attractor of order n (subharmonic) would be
scen as jumps between n fixed points.

A complete one-parameter stroboscopic bifurcation diagram for the reactor model is
shown in Fig. 4(a). The Y-axis represents the dimensionless dense phase temperature. On
the scale of this figure the diagram looks like an alternation of periodic regimes interrupted
by chaotic-like strips via period adding bifurcation. At large forcing amplitude i.e. beyond
the value A =10.0420 the system is fully entrained and emerges as a period-one attractor.

The effects of the amplitude forcing on the yield of the intermediate product in the
reaction network A — B — C can be seen in Fig. 4(b) showing the variations of the average
yield with the forcing amplitude. Starting with a yield 0.5644 corresponding to the
autonomous system (A = 0.0} it can be seen that the yield trend is generally a decreasing
one. Occasional bursts can be observed but in no instance is the yield greater than the
value corresponding te the autonomous system. Tt is therefore not possible to improve the
yield by increasing the forcing amplitude. This however is not the case when the frequency
15 chosen as the bifurcation parameter as it will be shown in later sections.

The behavior of the syslem as shown in Fig. 4(a) is in tact more complicated and an
enlargement of somc regions of the diagram is needed in order to analyze the finer structure
of the system behavior,

Region R, A =0.00to 0.0270

The limiting case of this region is the autonomous oscillatory system {A_ = 0.00).
Five branches cmerge on the stroboscopic diagram of Fig. 5(a). Frequency locking occurs
therefore at relatively small amplitudes, as five sub-harmonic saddles and five nodes are
born on the surlace of a three dimensional torus and the system is entraincd by the forcing
frequency. The rcsonant (entrained) trajectory has obviously periodicity five times the
forcing period {frequency locking). It can be seen that through oul region R, the system
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alternates between periodic and chaotic-like regimes by reverse period adding i.e. the
period of the windows decrease ns the forcing amplitude increases. At the end of region
R, the systemn emerges as a period-2 atiractor.

Periodic windows and intermittency

To analyze the mechanism of transition from chaos to periodic Tegime in region R of
Fig. 5(a) we consider the region R, enlarged in Fig. 5(b) covening the parameter range A,
€ [0.0015, 0.0055]. The system starts its fransformation from periodic to a chaotic-like
behavior with a region of Period-3 attractor starting at A = 0.0020. As the forcing
amplitude increases the periedic atttractor starts to undergo period doubling sequence at
A, =0.0026 giving a region of Period- 10 attractor which bifurcates again to chaos through
period doubling and so on. Through out this region the system goes through an alternation
of periodic windows and chaos and emerpes as a2  Period-4 attractor starting at A, =
0.0049,

The characteristics of the chaotic atiractor are displayed by choosing the point A,
(A, = 0.0040) of Fig. 5(b). Dynamic simulations arc shown in Fig. 6. Time trace and
stroboscopic histogram are presented. The points on this histogram are clearly mixed
indicating at least an ergodic behavior. The chaotic nature of the attractor is confirmed by
computing Lyapunov exponents, A chaotic attractor has at least one positive Lyapunov
exponent. These exponents can be computed efficiently using the technique and algornithm
of Wolf et al. [20] and arc found to be &, =0.00245, X, =-0.01269, A, —-0.55495] and A,
=-0.403501. The largest component is positive giving proof of the chaotic nature of the
attractor.

The mechanism of bifurcation from the chaotic attractor to a Period-4 attractor is
investigated by considering the point A, of Fig. 5(b) corresponding to a forcing amplitude
A, = 0.0048. Dynamic simulations at this point are shown in Fig. 7. The forth iterate of
the dimensionless dense phase temperature Y(n+4) is plotted against Y(n). Figure 7 shows
that the curve approaches the diagonal and almost becomes tangent at four points. The
chaotic aftractor is thus destroyed by the mechanism of intermittency as shown by Pomeau
and Manneville [21]. The term intermittency refers to oscillations that are periodic for
certain intervals (laminar phase} interrupted by intermittent erratic bursts of periodic
oscillations of finite duration.

Region R,: Period adding of the second kind

Beyond the forcing period corresponding to A, = 0.0270 (end of region R, ) the system
alternates betweernrchaotic behavior and periodic windows until the system is fully entrained
at high amplitudes {region R, }. The dominant mechanism here is period adding with strips
of chaos. This behavior is termed period adding ef the second kind and was first studied
by Helden and Fan [22] in their analysis of the behavior of the autonomous three-
dimensionless Rose-Hindnarch model for neural activity.
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The final bhifurcation to the harmonic trajectory (fully entrained) is investigated by
considering the point A, in region R, enlarged n Fig. 8(a) and corresponding to A, =
0.0415. Dynamic simulations for this point are shown in Fig. 3{b-c). The maximum
Lyapunov exponent is zere confirming further the quasi-periodic nature of the attractor.

Frequency Forcing of a Periodic Attractor

The second part of this investigation focuses on studying the effects of varying the
forcing frequency while the amptlitude is fixed. The center of forcing corresponds to a
period-2 altractor at the constant amplitude A = 0.02 (Fig. 4(a)). The natural frequency
w, of the atiractor is therefore half the forcing frequency wy:

A one-parameter stroboscopic bifurcation diagram is shown in fig. 9. Figure 9(a)
covers the parameter range w / w, 2 1 while the complementary range w/ w, < 1is
shown in Fig. ¥{(b).

On the scale of Fig. 9(a) it can be shown that starting form the periodic attractor (w/
wp = 1) the system starts its bifurcation with a periodic regime thaf persist through out
region 3,. Atthe end of this region at w/ w, = 1.401 the periodic-like oscillations terminate
and a chaotic-like regime appears. The chaotic-like regiroe persists through out region S,
At the end of region S, at w / w, = 1.905 a periodic attractor emerges and so on. The
system goes then through an alternation of periodic and chaotic-like regimes. Similar
behavior can be observed for the region w / w, < 1 in Fig. 9(b). The system starts with a
periodic regime and as the forcing frequency decreases the system goes through an
alternation of chaotic-like and periodic regimes.

In order to analyze the finer structure of this mechanism the Lyapunov exponents
spectrum is computed for a region covering the frequency range w / w, € [3.50,6.00] as
shown in Fig, 10(a). The region corresponds to the end of region 8, and the whole region
8, of Fig. 9(a). By analyzing the Lyapunov spectrum shown in Fig. 10(b) it can be seen
that its maximum starts with negative values, indicating a periodic regime then it becomes
positive for some values of the forcing frequency, indicating a chaotic behavior and then
alternates between positive and negative values.

Effects on the yield

The effects of frequency forcing on the yield of the desired product in the reaction
network can be seen in Fig. 11 showing the variations of the average yield with the forcing
frequency. The investigation covers the parameter range w / w, [0.0, 2.0]. Starting
from the value of the yield (0.5644) corresponding to the autonomous case (w == 0) the
yield jumps to higher values for some range of the forcing frequency and then decreases.
It can be seen that for a large range of forcing frequency (w/ w, & [0.0,1.05]) the yield
is higher than the value 0.474830 corresponding to the center of forcing (A, = 0.020).
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The maximum value reached by the yield (0.5765) is even higher than the yield (0.5644)
corresponding to the autonomous system. Figure 12(a) shows an enlargement of a portion
of Fig. 11(a) for the parameter range wiw, e [0.185,0.210]. The maximum value of the
yield (0.5765) occurs at the forcing frequency of wr/wp = (.2004. Figure 11{b) shows the
stroboscopic map for the region in question while the Lyapunov exponent spectrum is
shown in Fig. 11(c). It can be observed that the yield increases through out the region of
high periodicity and reaches its maximum in a region of chaotic behavior.

Numerical investigations have revealed then that yield of the autonomous petiodic
regime can be improved by appropriate choice of the forcing frequency.
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Conclusions

An investigation of the chaotic behavior of a non-isothermal fluidized bed reacior
when the feed temperature is periodically forced has been camied out in this paper. The
investigation revealed the richness of the dynamic behavior of this system. Chaotic regimes
emerge form the initially periodic system even for small amplitudes. Different mechanisms
for the transition between chaotic and periodic regions has been analyzed, incliding period
adding and saddle-node bifurcation. Numerical investigation has shown that the yield
while decreasing with the change in the amplitude can be improved by the selection of
appropriate forcing frequency.
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