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Abstract. We investigate the atom-wave modal of the neutral atom restricted by the two-dimensional optical 
dipole potential due to a cavity mode. Our model is based on the optical restriction of a sodium atom inside a 
long hollow cylinder with a rectangular cross section of sub-wavelength dimensions ×a b . We have assumed 
large negative detuning situation 0 0,δ ℜ γ  and that the atom dipole moment vector d is set in the 
longitudinal direction. The parameters selected in this work are taken to guarantee that the atom is sufficiently 
cooled below the recoil limit to permit several quasi harmonics restricted quantum states.  
 

Introduction 
 
The study of the motion of atoms in laser light fields has led to remarkable advance in 
atom cooling and restricting (trapping) [1-5]. In particular, the intense coherent light of 
laser has been used to cool neutral atoms down to the micro-Kelvin  [6] and now even 
the nano—Kelvin regimes [7].  At such low temperatures, the de Broglie wavelike 
character of the atom becomes pronounced, making it necessary to treat the atom as 
wave phenomena.   
  
 The atom-wave modal of such atom is fully achieved by solving Schrödinger 
equation to find the vibrational wave functions and evaluating the discrete vibrational 
quantum states [8]. Recently, the Schrödinger modal of restricted atom has received 
considerable attention. Starting with the work of Wallis et al. in 1992, three different 
cases of opening cavities; parabolic atomic mirror, evanescent light-wave and 
gravitational trap have been calculated [9]. Dowling in 1993, Dowling and Gea-
Banacloche in 1994 and 1995 and Söding et al. in 1995 have carried out the same 
calculation for conical and pyramidal traps [10-12]. We have evaluated such modal for 
an atom restricted between parallel-plate by the optical dipole potential [13].     
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 The main objective of this paper is to consider the problem of finding the atom-
wave modal for a restricted atom inside a long hollow cylinder with a rectangular cross 
section of sub-wavelength dimensions by solving Schrödinger equation. In contrast to 
opening  and parallel-plate cavities,  the rectangular waveguide gives sufficient depth to 
the potential well at the same set of parameters. In addition, the rectangular waveguide 
can also confine atoms transversely in two directions which leads the elimination of the 
problems of the transverse diffusion that limit the ability of the parallel plates waveguide 
[14-15].     
 
 The paper is organized as follows. In Section 2, we present the theoretical model of 
this study that deals with an optically restricted single atom inside a long hollow cylinder 
with a rectangular cross section. In addition, we outline the procedure leading to the 
evaluation of the two-dimensional optical restricting potential in such a cavity. In 
Section 3, we estimate the vibrational frequency of the restricted atom by using the 
harmonic oscillator approximation. In Section 4, we derive the numerical solution of the 
two-dimensional Schrödinger equation involving the full potential leading to the precise 
details of the vibrational levels using sodium atom for illustration. Section 5 contains the 
conclusions.  
 

2.  Theoretical Model 
 

 The atom guide focused on here is in the form of a rectangular waveguide, as 
depicted in Fig. 1. As shown in this figure, a normal cross section is assumed to have the 
dimension ×a b  and is taken to lie in −y z  plane with the cylinder axis along the 
x direction, coinciding with the straight line / 2=y b ; / 2=z a . The guide is bounded 
by walls arising from the intersection of four planes at 0=y ; =y b   and 0=z ; =z a  , 
all are assumed to be planar surfaces of perfect conductors which exclude all 
electromagnetic fields from their interior. The standard electromagnetic  boundary 
conditions apply such that the tangential component of the electric field vector and 
magnetic field vector must vanish at every point on all guide walls. 
 

The optical dipole potential of such model can be altered fundamentally when a 
waveguide mode is excited at frequency ( , , )ω k n m , which is nearly tuned to the dipole 

transition frequency ω0 . The mode frequency satisfying the dispersion relation: 
 

( )
1/ 22 2 2 2

2
2 2, , m nk m n c k

b a
π πω ||

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 (1) 

 
where m  and n  are the integer quantum numbers refer to the order of excited mode 
and k  is an axial wave vector. 
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Fig. 1. A rectangular waveguide. 
 
 It is convenient to simplify the notion by introducing a compound mode variable 
q which stands for the three-mode variable ( , , )k m n . By setting ( , )⊥=r rx  with x  an 
axial coordinate and ( , )⊥ =r y z at a two-dimensional (transverse) position vector in the  
−y z  plane, we can write the optical dipole potential U  that confines the atom inside a 

rectangular waveguide at a static case as [5]:  
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where ( )⊥γ r  is the spontaneous emission rate, ( , , , )|| ⊥ℜ rk m n  is Rabi frequency and 

0( )δ = ω −ωq  is the static detuning of the cavity mode from the atomic resonance. Here, 
we are going to consider just an especial situation for the spontaneous emission rate 

( )⊥γ r , Rabi frequency ( , )⊥ℜ rq  and thus the optical dipole potential ( ), ⊥rU q . In that 
the atom is orientated parallel to the axial direction of the waveguide with negative 
detuning 0δ < . In addition, the parameters selected in our evaluation are taken to 
guarantee that the atom is sufficiently cooled below the recoil limit. We have applied 
these conditions because the main aim of this work is to evaluate a quantum behavior of 
the neutral atom restricted by two-dimensional guiding potential. In this situation, Eq. 
(2) should be re-written as follows: 
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To ease the calculation, we suppose that a b L= = ,  therefore the spontaneous emission 
rate ( )|| ⊥γ r  can be given by [15]: 
 

[ ][ ]2 / 2 / 3 2 2
2 2

2 1/ 22 20 0 2 20
2 2

3( ) sin sin
4

λ

|| ⊥
= =

⎡ ⎤
⎢ ⎥
⎢ ⎥λ + π π⎛ ⎞ ⎛ ⎞⎢ ⎥γ = γ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝ ⎠π ⎛ ⎞ω⎢ ⎥− −⎜ ⎟⎜ ⎟⎢ ⎥π⎝ ⎠⎣ ⎦

∑ ∑r
L L z

o
m n

m n m y n z
L LL L m n

c

 (4) 

 

where 0γ  is the corresponding spontaneous rate in free space. Beside 1m =  and n = 1 
for the p-polarized case,  ( ,1,1, )|| ⊥ℜ rk  can be given by  [15]: 
 

0
0
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where 0ℜ  is the corresponding Rabi frequency in free space.  
  
 Figure 2 shows the variation of the optical dipole potential ( ,1,1, )⊥rU k  for 
sodium atom when its dipole orientated parallel to the axial direction of the waveguide 
corresponding to the parameters given in Table 1.    
 
Table 1. The parameters corresponding to Figs. 2, 3 and 4 

Units Value Symbol Parameters 

nm 589 λ  Free space wavelength 

kg 3.8 x 10-26 M Atomic mass 

nm 1.5 λ / 2 L Waveguide length 

MHz 61.3 
0γ  Free space decay rate 

GHz 8.56 
0ℜ  Free space Rabi freq. 

GHz - 36.78 δ  Static detuning 

  
 It can be seen from Fig. 2 that, the central well depth is about 23.5u  

26(where u 2.6 10 J)−= × which is very enough deep to permit several quasi harmonic 
vibrational quantum states. The vibrational frequency of the quantum states can be 
estimated simply by using the harmonic oscillator approximation while the precise 
details of these states can be obtained straightforwardly by the numerical solution of the 
two-dimensional Schrödinger equation involving the full potential. 
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Fig. 2. Cross section of the optical dipole potential of the atom inside the rectangular waveguide. 
 

3. Harmonic Oscillator Approximation 
 

 We can estimate the vibrational frequency of the restriction of such atom by 
approximating the dipole potential in Fig. 2 by the harmonic oscillator approximation 
around the dipole potential minimum for mode ,m n  as [16]: 
 

( ) ( )22
min. mn min

1U q, U M ............
2⊥ ≈ + ω − +r r r  (6) 

 

where mnω  is the vibrational frequency of the atom in the dipole potential and the sub-
numbers refer to the order of the excited mode. The quantity mnMω  is called the 
Stifness constant and min.U  is the potential minimum which can be given by: 
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The harmonic oscillator approximation for the parameters given in Table 1 is going to 
give a central well depth approximately like Fig. 2 as shown clearly by a dotted line in 
Fig. 3.  
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Fig. 3. The cross section of the optical dipole potential of the atom inside the rectangular waveguide 

showing the potential minimum  at the center. The dotted line shows the harmonic oscillator 
approximation to the dipole potential. 

 
 The harmonic vibrational frequency mnω  can be estimated simply by using the 
harmonic oscillator approximation as follows: 
 

min

1
22
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where 2 2 2 2 2/ y / z⊥∇ = ∂ ∂ + ∂ ∂  is the Laplacian operator for the cross-sectional 
coordinate. We have explicitly, 
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while the corresponding harmonic oscillator approximation ground state width of the 
atom is obtained by: 
  



Calculations of the Atom-wave Modal … 93 

( )1/ 2
mn/ M∆ = ωr  (10) 

 The harmonic oscillator approximation is valid only if 
min

∆ <<r r  so that the atomic 
wave function is well localized around the potential minimum. It is not difficult to check 
that for the above parameters values for sodium atom immersed in 1m n= =  p-polarized 
mode within the rectangular waveguide system described above we have:  
 

11 19.1MHzω ≈  (11) 
 

4.  The Schrodinger Equation 
 
 The calculation of the atom-wave modal can be obtained by solving a scalar wave 
equation in a rectangular waveguide. In this case, the Schrödinger equation of such 
system may be written as: 
 

( ) ( )
2

2 2
q qk ( ) U k ,1,1, E ( ) 0

2M ⊥ || ⊥⎡ ⎤− ∇ − Ψ + − Ψ =⎣ ⎦r r r  (12) 

 

where ( ) 11U k ,1,1, U (k , )|| ⊥ ⊥≡r r  is the optical dipole potential that the atom is 

immersed in, which varies with waveguide cross-section according to Fig. 2 and E  is 
the vibrational energy eigen-value. q ( )⊥Ψ r  is the wave-function of the moving atom 
inside the rectangular waveguide and for the parallel case of p-polarized mode, which 
can be easily given by: 
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where p (q)N  is the p-polarized mode normalization factor given by: 
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By rearranging the Eq. (12), we have: 
 

[2 2
q 11 q2

2Mk ( ) ( E U (k , ) ( ) 0⊥ ⊥ ⊥⎡ ⎤ ⎤∇ − Ψ + − Ψ =⎦⎣ ⎦ r r r  (15) 

 

Performing the change of variables /y L=S  and /z L′ =S , yields: 
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The energy E  and the potential U  can be scaled to the dimensionless quantities 

0E / EΞ =  and 0V U / E=  by introducing the quantity 2 2
0E / 2ML= . Then Eq. (16) 

becomes: 
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Let us assume that the atom is subjected to a sufficient cooling process before it is 
coupled to the waveguide (i.e. 0ϑ ≈ ). This leads to that the value of the longitudinal 

wave-vector k  considered quantized and consequently, the system operate with 
particular longitudinal mode of propagation (i.e. single mode operation). In this case, the 
maximum transverse velocity 

(max)

ϑ
⊥

 due to the potential, which corresponds to the central 
potential depth, can be given as [13]: 
  

[ ]1/ 2
(max) 11 min2U ( L / 2) / M⊥ ⊥ϑ = =r  (18) 

 
Here, the maximum transverse velocity (max)ϑ⊥  is 5.56 /m s , therefore the momentum of 
the photon is analogous to the momentum of the atom or, in other words, the de Broglie 
atomic wavelength is large enough to observe. Consequently, from the boundary 
condition q q(y, z 0) (y, z L) 0Ψ = = Ψ = =  at the hollow wall and the localization of the 

atom at the centre of the waveguide mn mnV ( , 1/ 2) V′ = ≡S S ,  the transverse 
quantization condition is: 
    

2 2 2 2 2
mn mn mnV k L (m n )Ξ = + + π +  (19) 

  
 However, the eigen-value Eq. (17) can be solved numerically with high accuracy in 
many ways [17]. It can be deduced from Eq. (13) that the lowest wave-function will be 

11Ψ  because 00Ψ  , 01Ψ  and 10Ψ  will be zero. We plot the atom wave-functions mnΨ  
where , 1,2,3n m =  in Fig. 4 at 0x = . These are exactly the same as the normal solution 
to the two-dimensional harmonic oscillator problem. It can be seen that, in the 
rectangular waveguide when a b L= ≡ (i.e. the square waveguide case), 12Ψ  has 
exactly the same shape and magnitude as 

21
Ψ  with different orientation because these 

two modes have the same dispersion relation. This property will be true for any two-
commutative modes in the square waveguide. In contrast to the case a b≠ , one of the 
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commutative modes will have the lesser value of dispersion relation depending on the 
shorter direction. This also leads to the same shape of wave-function, but with a different 
magnitude. 
 

 The relationship between the transverse temperature, waveguide dimension and 
mode propagation can be defined in a transverse de Broglie wavelength mn

⊥λ  as follows: 
    

mn 2 2 1/ 2
2L

(m n )
⊥λ =

+
 (20) 

while the transverse attenuation constant mnα  through the waveguide cross section can 
be obtained in the view of Eq. (19) as: 
  

21Ψ

12Ψ 13Ψ

23Ψ

32Ψ31Ψ  33Ψ

11Ψ  

22Ψ

 
Fig. 4. First six-wave function for a single mode atom wave propagation in red-detuned inside the 

rectangular waveguide. 
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( )2 2
mn mn mn mnV k L / Lα = Ξ − −  (21) 

 
For good, single mode, coherent atomic beam, one would like to use the lowest 

order 11Ψ  mode. This mode requires the lowest transverse temperature and the largest 

transverse de Broglie wavelength, 11 2L⊥λ = . This result is commonly accepted with the 
basic idea of the wave optics approach, where one assumes that the wave is confined 
within the hollow of the waveguide with a standing wave pattern in the lateral direction 
that falls to zero at the hollow wells and an integral number of half-wavelengths are 
fitted across the cross section of the waveguide.  

 
 The transverse temperature mnT⊥  (in degree Kelvin) required to attain these 
transverse de Broglie wavelengths are given by: 
  

( )2 2 2 2

mn 2
B

m n
T

2Mk L
⊥

π +
=  (21) 

 
For the lowest order 

11

Ψ  mode corresponding to the parameters given in Table 1, Eq. 

(21) yields transverse temperature of  11T 0.53 K⊥ ≈ µ  which is only less by 4.52  times 
then the recoil temperature for sodium atom ( 2.4 )T Kµ= . However, the cooling of 
atoms to below recoil temperature by as much as ( / 70)T  has been achieved 
experimentally [7]. 
  

5.  Conclusions 
 
 In conclusion, we have examined in detail the quantum properties of restricted 
atoms in waveguide with the hollow rectangular cross section. The optical potential that 
acts on the atom with negative detuning to restrict the atoms within the central region 
was evaluated. This evaluation was made using appropriate parameters that provide a 
adequately deep central well.  
 
 We have also calculated transverse atomic motion of the atom in the restricting 
potential due to a system mode and described this motion in terms of quantum states in 
two ways. First, we have estimated the vibrational frequency of these quantum states 
using the harmonic oscillator approximation. Second, we have evaluated them by the 
numerical solution of the two-dimensional Schrödinger equation. 
  
 It should be noted that here we have neglected the effect of the gravity, but it has 
been considered by Harris and Savage [18]. In addition, the problems of the van deer 
Waals potential which effectively acts at short distances ( / 4 )L λ π<<  and the Casimir-



Calculations of the Atom-wave Modal … 97 

Polder at large distances ( / 4 )L λ π>>  is also not considered, but they have been  clearly 
estimated by Sukenik et al. [19] as well as by Marksteiner et al. [20]. 
  
 Finally,  the researcher would like to mention that the major benefit of such work 
arises from the fact that it provides a more extensive understanding of the quantum 
behavior of a restricting atom in a micro-cavity, in general. Along with, there are some 
arguments that such a confinement is useful in the study of Bose-Einstein condensation 
and basically can be used in quantum information processing [21-23].  
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