Naturally Occurring Pterocarpanoids and Related Compounds

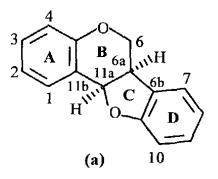
H.M.G. Al-Hazimi and Hamad Z. Alkhathlan

Department of Chemistry, College of Science King Saud University, P.O. Box 2455 Riyadh - 11451, Saudi Arabia

(Received 14/9/1999, accepted for publication 21/2/2000)

Abstract. In the present review, an effort has been made to list all pterocarpanoids and cournestans which have been isolated from various plants belonging to the plant family Leguminosae (Fabaceae) up to mid-1998. The antimicrobial activities as well as the biosynthetic pathways of these compounds are briefly included.

Introduction


Pterocarpanoids and isoflavones represent the most abundant classes of isoflavonoid phytoalexins produced by leguminous plants. These natural compounds probably play an important role in the disease resistance of such plants. In continuation of our interest in literature survey of natural phenolics [1-4] we present, herein, a survey of ptercapanoids and the structurally related coursestans.

Pterocarpanoids

Pterocarpanoids are a group of naturally occurring heterocycles having a 6a, 11adihydrofurobenzopyran nucleus (a) which has two assymmetric centers. Formula (a) shows the absolute configuration of the majority of the naturally occurring pterocarpans [5] which is currently indicated as 6aR, 11 aR. This designation is consistent with those pterocarpans which have no substituents at carbons 6a and 11a.

The majority of natural pterocarpans have large negative $[\alpha]_D$ values and consequently are considered to have the same absolute stereochemistry which is consistent with the results from ORD curves [6 - 8].

Literature survey revealed that the pterocarpanoids are limited in their occurrence to plants of many genera of Leguminosae (Fabaceae). However, the plant species of the

Erythrina, Glycine, Sophora and *Swartzia,* constitute the major source of this class of natural compounds. The structures of these natural compounds are shown in Figs. 1-5, while their botanical sources are given in Table 1. These compounds bear hydroxy, methoxy, methylenedioxy or prenyl substituents as illustrated in Figs. 1-5, and all of them are oxygenated at 3 and 9 positions. These compounds occur in nature mainly as aglycones. Pterocarpans are found mainly in the heartwood of tropical genera of the Leguminosae. However, these natural phenolics are often found in the roots of other leguminous plants such as *Neorautanenia, Lonchocarpus, Sophora* and *Tephrosia* (Table 1).

Plant species	Compd. no.	М.р.•С	Plant parts	Reference(s)	
Andira inermis (Wright) H.B.K	30	179-80	heartwood	[132]	
Albizzia procera	1		heartwood,bark	[137]	
Astragalus mongholicus	16	136-37	roots	[9]	
	114		roots	[57]	
Baphia nitida	31		heartwood	[138]	
Calopogonium caeruleum	55		leaves	[120]	
Calopogonium muconoides	72			[120]	
Cladrastis platycarpa (Maxim.)	2,30		heartwood	[6]	
Makino	32	amorphous	heartwood	[6]	
Cicer species	114,115	-	roots	[183]	
-	2,30		roots	[183]	
Crotalaria barbata	98	75°	aerial parts	[172]	
Dalbergia decipularis Rizz. et Matt.	2	127-28		[106]	
D. ecastophyllum	2		wood	[77]	
D. odorifera T. Chen	2,10,23,25			[167]	
	26	amorphous		[167]	
D . spruceana Betith.	33,34,36			[11]	
D. variabilis	45		leaves	[186]	
Derris amazonica	2	127-28	aerial parts	[166]	
Derris uruca	109	179-80	aerial parts	[166]	
Desmodium gangeticum	69		roots	[23]	
	70	136-38	roots	[24]	
	71	236-38	roots	[24]	
Dolichos biflorus L.	53		leaves and stem	[88,142]	

Table 1. Distribution of pterocarpanoids in leguminous plants

Plant species	Compd. no.	M.p.°C	Plant parts	Reference(s)
Erythrina abyssinica	61	<u></u>	bark	[121]
E. burana Chiov.	53,73		bark	[49]
E. burttii	55	amorphous	stem-bark	[176]
	68	amorphous	stem-bark	[176]
. crista-galli	53,73	····· F ·····	stem-bark	[70]
	54	88.5-89.5	stem-bark	[89]
	61	152-53	stem-bark	[89]
	62	120-21	stem-bark	[89]
	107		roots	[44]
	80	oil	wood	[178]
	81	oil	wood	[178]
	99	oil	wood	[178]
	79	oil	wood	[178]
	53	oil	wood	[178]
	73		wood	[178]
. eriotricha, E. sigmoida	55	180°	stem,root bark	[177]
	70	224°	stem,root bark	[177]
. mildbraedii	61,72		roots	[50]
	86-88		roots	50]
orientalis	48	amorphous	wood	[179]
	49	246-48	wood	[180]
	56	oil	roots	[181]
	57	oil	roots	[181]
	78	oil	TOOLS	[181]
	61	160-62	roots	[181]
. sandwicensis	53,73	100 02	bark	[90]
	54			[>~]
	1,108			
	74			
. variegata	61			[122]
ysenhardtia polystachya	37		stems and bark	[74]
Ortego) Sarg.	51		Storing wind burn	17.11
lemingia chapper Buch-Ham	109	179-80	whole plant	[41]
liricidia sepium	2	28-29	heartwood	[184]
lycine canescens	- 90,91		infected leaves	[97,123]
yeme canescens	105	164-67		[25]
. clandestina	106			[25]
E max L.	40		seeds	[23]
	108		50045	[92,97]
	41		seeds	[52,67,68
	42		seeds	[105]
	42		seeds	[52]
	2		[93]	[52]
	2 90-91		leaves	[124,125]
	90-91 90		100403	[124,123]
	75,76			[94] [17.00]
	93			[17,99]
	94		1	[96]
	95-97		leaves	[96,97]
	40,90-92		leaves	[97]

95

Table 1. (Contd.).

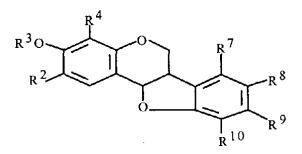

Plant species	Compd. no.	M.p.ºC	Plant parts	Reference(s)	
Lonchocaipus laxiflorus	14,15		roots	[20]	
Lonchocarpus species	four pteroca	rpans		[126]	
Machaerium vestitum Vogel	8	-	heartwood	[107]	
Maackia amunensis	30		heartwood	[133,136]	
Medicago sativa L	2,7		hay	[98-100]	
5	9		hay	[101]	
Melilotus alba	2		aerial parts	[102]	
Melilotus alba Desr.	20	48-51	aerial parts	[18]	
	21	173-75.5	aerial parts	[18]	
	22	160-62.5	aerial parts	[18]	
	23	161-62.5	aerial parts	[18]	
	25	197-99	aerial parts	[18]	
Millettia pulchra Benth	30	177-77.5	aerial parts	[16]	
niteniti pateniti Dentit	31	164-64.5	aerial parts	[16]	
	46,47	104-04.5	aerial parts	[16]	
Mundulea striata Baker	63	amorphous	aerial parts	[36]	
		244-46	-	_	
Neorautanenia amboensis Schinz.	102	244-40	roots	[26]	
N. amboensis	64-67,82,83		root bark	[27]	
N. edulis	100	222-23		[27,31]	
	66		root bark	[27,29]	
	84		root bark	[28]	
	68		root bark	[30]	
	103			[32,33]	
N. ficifoli	101		root bark	[34]	
	52		root bark	[35]	
Ononis viscosa L.	45	-	aerial parts	[185]	
	110	-	aerial parts	[15, 185]	
	50, 51	-	aerial parts	[187]	
	2, 4, 30, 31		aerial parts	[187]	
Pachyrrhizus erosus	1,103		leaves	[33]	
2	55		leaves	[174]	
	100		seeds	[182]	
Pericopsis angolensis L.	4,30,31		heartwood	[103]	
Phaseolus vulgaris L.	75-77			[37,85]	
	53	177-78		[38,39]	
Pisum sativum L.	30			[12,69]	
	41		[5]	2,67,104,127]	
	42		1.1	[52]	
	17	146-48		[13]	
	18	122-24		[13]	
	19	141-45		[13]	
Platymiscium trinitatis Bth.	2,8		wood	[128]	
Psophocarpus tetragonolobus	53		winged bean pods	[108]	
	3,53,60		winged bean pods	[21]	
Pterocarpus. dabergoides	31		heartwood	[134]	
P.macrocarpus	31		heartwood	[134]	
P.santalinus	4	86	heartwood	[134]	
·	3,4	00	heartwood	[129]	
				[135]	
P. soyauxii	31 11		heartwood heartwood	[129]	

Table 1. (Contd.).

Plant species	Compd. no.	M.p.°C	Plant parts	Reference(s)	
<u></u>	4			[134]	
Pueraria phaseoloides	55		leaves	[175]	
Pueraria tuberosa DC.	109	213	tubers	[130,131]	
Sophora flavessens	30,114		roots	[110]	
var.angustifolia				64 4 4 4 6 7	
S. flavescens var. angustifolia	115		callus cultures	[111,112]	
S.flavescens Aiton	10	230-32	roots	[109]	
S. franchetiana Dunn	89	149	roots	[113]	
S. franchetiana Dunn	36	159-61	roots	[114]	
S. japonica	31,101, 11		roots	[46]	
S. prostrata	58	oil	roots	[173]	
	59	oil	roots	[173]	
a	30,52,61,			[173]	
S. subprostrata	31	158	roots	[46]	
	101		roots	[46]	
Spartium junceum	13		roots	[115]	
Swartzia laevicarpa Amsh.	26	178-80	trunkwood	[19]	
(= S. benthamiana Bth.)	27	126-27			
	28	196-98			
	29	188-90			
S. leiocalycina	38		trunkwood	[116]	
	111,113		trunkwood	[116]	
S. madagascariensis	2,4, 7, 31,	37	heartwood	[103]	
	100,110				
S. ulei Harms	112		trunkwood	[117]	
Taverniera abyssinica	2,6		roots	[168,169]	
Tephrosia bidwilli	30,31,36,4	14	aerial parts	[22]	
Tephrosia candida	109	178-79	stems & leaves	[42]	
Tephrosia hildebrandtii Vatke	43		roots	[54]	
T. hildebrandtii Vatke	104		roots	[56]	
T. hamiltonii	109	180	roots	[43]	
T. maxima	30			[164]	
T. purpurea	30		roots	[118]	
T.vulgaris	76		roots	[165]	
Tetragonolobus maritimus	108		detached leaves	[119]	
Trifolium pratense	5			[102]	
	41		infected	[15]	
	114	142-44		[45]	
Trigonella foenum-graecum	2 (6a <i>R</i> , 11	aR)		[71]	
Ulex parviflorus	39	165-66	aerial parts	[170]	
	2, 35, 36		aerial parts	[170]	


Simple pterocarpans: The pterocarpans 5 and 16 have been recently isolated from the roots of Astragalus mongholicus [9]. The heartwood extractives of Cludrastis platycarpa yielded the 8,9-methylenedioxy pterocarpan 3 [6,10], while the structurally related compounds 7-9 were obtained from Dalbergia spruceana [11]. We prefer this term to those pterocarpans which are not prenylated. Their structures are shown in Figs. 1 and 2. A total of forty-four nonprenylated pterocarpans have been obtained from different legnminous plants. Among these, the compounds, medicarpin (2), maackiain (30) and pterocarpin (31) repeatedly occur in plants belonging to various genera as is noted from Table1. However, pterocarpin (31) is widely obtained from the heartwood of different Pterocarpus plants (Table 1). Medicarpin (2) and its 4-hydroxy derivative(6) were isolated from the root extracts of Taverniera abyssinica [168,169]. On the other hand, maackiain (30) and its methoxylated derivatives 35 and 36 were obtained from Ulex parviflorus[170]. Medicarpin (2) and maackiain (30) have been obtained as phytoalexins from the fungus-inoculated stems of 15 Cicer species[47,171] (-)(6aR, 11aR)-maackiain (29)[12] as well as the simple pterocarpans 17-19[13] Pisum sativum (Pea) tissue. The latter three were identified in infected pterocarpanoids were thought to be microbial transformation products of other pea metabolites [14]. Bilton et al [15] demonstrated that red clover (Trifolium pratense) leaves infected by nonpathogenic Botrytis cinerea produced pisatin (41). (-) Maackiain (30) and medicarpin (2) were metabolized by Sclerotinia trifoliorum to vield hydroxylated products identical to those isolated from the infected tissues of Trifolium pratense [15].

(-) Maackiain (30) and pterocarpin (31) as well as the two pterocarpanoids of a new type (46, 47) have been obtained from the extracts of the aerial parts of Mellettia pulchra [16]. The absolute configurations of (-) 30 and (-) 31 are 6aR, 11aR, as confirmed by X-ray analysis [17]. The simple pterocarpan 4 was also reported in five plant species as is noted in Table 1. Five new pterocarpans, namely melilotocarpans A-E(20-23,25), have been obtained from the aerial parts of alba [18]. Besides the common pterocarpans 4,30,31, several Melilotus nonprenylated pterocarpans were obtained from the trunkwood of four Swartzia species (Table 1) and all possess the 6aR, 11aR configuration [19]. Among these, compounds 27-29 (Fig. 1) are considered to be highly oxygenated particularly at ring D. Such highly substituted pterocarpans are also represented by compounds 14 the Lonchocarpus species [20]. 9-Hydroxy-3and 15 which occur in methoxypterocarpan 3 has been isolated in 1977 [21] from the winged been pods of Psophocarpus tetragonolobous and this is its single occurrence in nature. Acanthocarpin (44, Fig.2) is the only characterized pterocarpan with a methylenedioxy substitution in rings A and D, and was isolated from Tephrosia bidwillii [22]. The remaining pterocarpans and the plants from which they have been isolated are given in Table 1.

1	Н	H	н		Ĥ	н	OH	Н	Demethylmedicarpin
2	Н	Н	H	<i>S, S</i>	Н	H	OMe	Н	Medicarpm
3	H	Me	H		Н	Н	OH	Н	_
4	Н	Me	н	R,R	Н	Н	OMe	H	Homopterocarpin
5	Н	Н	Н	R,R	H	H	ОН	OMe	Nissolin
6	Н	H	OH		H	H	OMc	H	4-Hydroxymedicarpin
7	H	H	OMe		Н	Н	OMe	Η	4-Methoxymedicarpin
8	Н	Н	Н	<i>S, S</i>	Н	Н	OMe	OH	Vesticarpin
9	H	H	H	R, R	Н	H	OMe	OMe	Methylnissolin
10	H	H	Η	R,R	Н	OMe	ОН	Н	Kushenin
11	Η	Н	Н	R,R	Н	OH	OMe	Η	
12	Н	Мс	Н	R,R	Н	OH	OMe	Н	
13	OMe	Me	Н		Н	Η	OH	H	Sparticarpan
14	H	Ħ	Н		OMe	Н	OH	OMe	
15	Н	Н	Н		OMe	Н	OMe	OMe	
16	Н	Me	Н	R,R	Н	Н	OMe	OMe	
17	OMe	H	Н	R,R	Н	Н	OMe	H	
18	OMe	Me	Н	R,R	Н	Н	OMe	Н	
19	OMe	Me	OH	R,R	Н	Н	OMe	Н	
20	Η	Me	OH	R,R	Н	Ĥ	OH	H	Melilotocarpan A
21	Н	Me	OH	R,R	Н	Н	OMe	Н	Melilotocarpan B
22	Н	Me	OH	<i>R</i> , <i>R</i>	н	Н	OMe	OMe	Mehiotocarpan C
23	Н	Me	OH	<i>R</i> , <i>R</i>	H	Н	OMe	OH	Melilotocarpan D
24	Н	Me	OMe	R, R	н	Н	OH	OMe	Odoricarpin
25	Н	Me	OH	<i>R,R</i>	Н	Н	OH	OMe	Melilotocarpan E
26	OH	Me	Н	<i>R</i> , <i>R</i>	H	OH	OMe	Н	
27	OH	Me	Н	R,R	Н	OH	OMe	OMe	
28	Н	Me	OMe	<i>R</i> , <i>R</i>	Н	ОН	OMe	OMe	
29	OH	Me	OMe	R,R	Н	ОН	OMe	OMe	
30	Η	Η	H		Н	O-CH ₂ -C)	Н	Maackiain =Demethylpterocarpin
31	Н	Me	Н	R,R	Н	O-CH,-C)	Н	Pterocarpin
32	ОН	Н	II		н	0-CH2-C		Н	
33	H	Н	ОН	R , R	H	0-СЦ,-С		H	
34	H	Me	OH	R, R	H	0-CH2-C		Н	
35	OMe	Н	Н	,	Ĥ	0-CH ₂ -C		Н	(-)-2-Methoxymaackiain
36	H	H	OMe	R, R	н	0-CH ₂ -C		H	(-)-4-Methoxymaackiain
37	H	Me	OMe	,	II	0-CH2-C		H	()
38	он	Me	Н		H	0-CH,-C		H	
39	OMe	Me	OMe		H	0-CH ₂ -C		H	<u></u>

Fig. 1. Simple pterocarpans.

Prenylated pterocarpans: The structures of these compounds are shown in Figs. 3a-d. The root extracts of *Desmodium gangelicum* [23,24] yielded the prenylated compounds (69-71). Several 6a-hydroxypterocarpans are synthesized as phytoalexins by *Glycine max* (Soybean). These *Glycine* pterocarpanoids are all prenylated (6aS, 11aS)-6a-hydroxypterocarpans (Fig. 3d) with the exception of the nonprenylated parent, glycinol 40. The infected leaves of other two *Glycine* species found to contain isoprenyl 6a-hydroxypterocarpanoids include two novel compounds 105 and 106 [25]. The new pterocarpan, barbacarpan (98) has been isolated from the chloroform soluble fraction of the alcoholic extract of the dried aerial parts of *Crotalaria barbata* [172]. Prenylated pterocarpans, 89 and 101, were obtained from the roots of two species. Further investigation of the phenolic constituents in the roots of *Sophora prostrata* gave fourteen phenolic compounds, including the prenylated pterocarpans 24, 61, 72, 58 and 59 [173].

Examination of the root bark extracts of three Neoraulanenia species led to the isolation of the prenylated pterocarpanoids 52,72,64-67,82-84,68 and 100-103 [26-35]. The extract of the seeds of Pachyrrhizus erosus gave nine isoflavonoids, including the ptrocarpan, neodulin 100 [182]. Recently, the new prenylated compound 63 was isolated from Mundulea striata, a plant used locally in Madagasear as fish poison [36]. Phaseollidin (53) and the structurally related pterocarpanoids 75 and 76 occur in Phaseolus vulgaris [37-40]. However, 53 was isolated from other plants (Table 1) accompanied occasionally by prenylated pterocarpans like 60 (1-methoxyphaseollidin) from Psophocarpus tetragonolobous [21] and compounds 53, 73 from Erythrina cristagalli (Table 1). Calocarpin (55) has earlier been reported from Pachyrrhizus erosus [174] and later from Calopogonium species[120]. This prenylated pterocarpan accumulates as a major phytoalexin in leaves of Pueraria phaseoloides [175]. Recently, compound (55) has been obtained from the stem bark exudates of Erythrina burtii [176] together with pterocarpan 68. Tanaka et al. [177] have also reported compound (55) from the stem and root bark of another Erythrina species(Table 1). Pterocarpanoids 1,53,54,61,62,72-74,87-89,107 and 108 have been isolated from various Erythrina species (Table 1) and are all prenylated with the exception of the pterocarpanoids 1 and 108. More recently, the new pterocarpans, erystagallins A-C(80, 81, and 99) were isolated from the wood of Erythrina crista-galli [178] together with three other prenylated pterocarpans, 79, 53 and 73. The absolute stereochemistry at C-6 α and C-11 α was R [178], which was confirmed by the CD spectrum which displayed a negative cotton effect at 236 nm. Further, prenylated pterocarpans, 48, 49, 56, 57 and 78 were isolated from the wood extracts of E. orientalis [179 - 181].

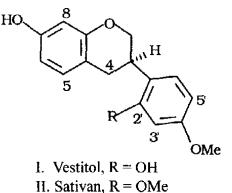
Pterocarp-6(11)-enes: This group is represented by six compounds and their structures are given in Fig. 4. Flemichapparin-B(109) was first isolated from *Flemingia chapper* [41] and was recently found in the roots of two *Tephrosia* species [42,43]. Erycrystagallin (107) has been recently obtained [44] from the roots of *Erythrina crista-galli* as the main antimicrobial constituent of this plant. In fact, this compound is the only prenylated representative of the group. Pterocarpenes 110-112 have been isolated from the extracts of three *Swartazia* species (Table 1).

Pterocarpan glucosides: These compounds are very limited in their numbers. Trifolrhizin (1-maackiain-mono- β -D-glucoside) (114) was first obtained from *Triofolium pratense* [45] and its structure was confirmed by spectroscopic methods[104]. This glucoside is also reported from the root extracts of two Sophora species (Table 1) and more recently, it was detected in nine *Cicer* species [183], together with its corresponding malonyl-glucoside(115). The latter compound was reported from Sophora flavescens [111, 112]. d-Maackiain o no- β -D-glucoside (sophojaponicin)(116) and dl-maackiain mono- β -D-glucoside (117) have been reported to occur in the roots of Sophora japonica [46].

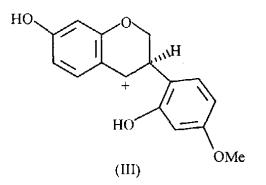
Bioactivity

Phytoalexins are defense substances with antimicrobial properties that are produced by plants in response to fungal infection. A number of pterocarpans are phytoalexins [47,48]. For example, pisatin (41), phaseollin (75) and 6a-hydroxyphaseollin(76) are important phytoalexins of leguminous plants. Pterocarpans 53 and 73 have exhibited moderate but selective activity towards DNA repair-deficient yeast mutants, whereas only 53 was found to be cytoxic [49]. Simple pterocarpans 2 and 6 showed nematocidal activity[169]. Besides these nematocidal effects, cytotoxic and antimicrobial activities were observed. The chloroform soluble extract of the seeds of *Pachyrrhizus erosus* was reported to exhibit a very intense cytotoxic activity on P-388 lymphocytic leukemia cells [182]. A systematic study of phytoalexin production in the genus *Lathyrus* (Leguminosae) has shown that almost all of the species examined produce isoflavonoid phytoalexins in response to fungal infection. The pterocarpin, pisatin(41), was the major phytoalexin produced in most species, but other simple pterocarpans, like 2, 3, 5 and 45, were observed in some cases[55].

Antimicrobial activity is a common feature of pterocarpans, whether they are present in the healthy plant or are formed postinfectionally. Five pterocarpans, erythrabyssin- II(61), erybraedins A-C(87-89) and isoneorautenol (72), which were isolated from *Erythrina mildraedii* [50], have shown antimicrobial potency. In particular, (61) was more potent than the others. The antimicrobial potency of another *Erythrina* species has been shown to be due to the presence of pterocarpans [50]. (+) Pisatin (41), the first known phytoalexin has been shown to have a broad spectrum of antimicrobial activity and has an important role in disease resistance [51]. Pisatin (41) was also found to inhibit spore germination of some microorganisms [52], while 2-hydroxypisatin was not active at higher concentrations.

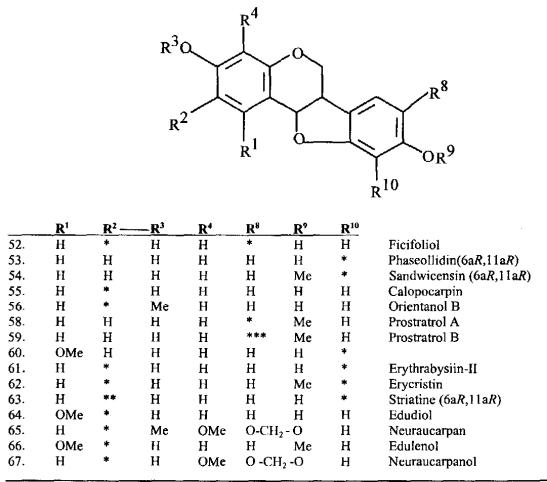

Some pterocarpans are known to be fungitoxic (e.g. (+) pisatin), although fungal degradation of these phytoalexins has been reported [53]. The profile of degradation of pisatin, and its regulation of production within the plant is not thoroughly understood. The pterocarpans isolated from the fungus inoculated parts of *Glycine max* have been shown to possess antifungal activity [25,91]. However, the unsubstituted (-) glycinol(40) is reported to be inactive [17]. The simple pterocarpan, medicarpin (2) is known to be antifungal [54].

6a-Hydroxypterocarpans have show insect antifeedant and antifungal properties [56]. The extracxts of *Tephrosia candida* are reported to possess significant insecticidal and antifeeding properties against some insects [42]. Toxic effects have also been reported form *Mundulea striata* [36].

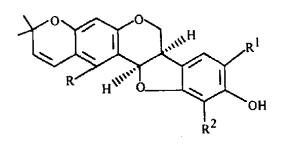

Biosynthetic pathways

Pterocarpans are smoothly converted into the corresponding 2'-hydroxyisoflavans on hydrogenolysis [58] and they may be produced by DDQ oxidation of 2'hydroxyisoflavans. This process has been postulated as a chemical analogy for the biosynthetic relationship [59].

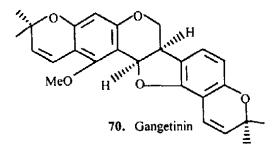
2'-Hydroxyisoflavones are precursors of pterocarpanoids. Feeding experiments in $CuCl_2$ -treated lucerne (*Medicago sativa*) have shown that the 2',7-dihydroxy-4'-methoxyisoflavone (Me -¹⁴C) and the corresponding isoflavanone are efficient precursors of the phytoalexins demethylhomopterocarpin (1) and the two isoflavans vestitol (I) and sativan (II).



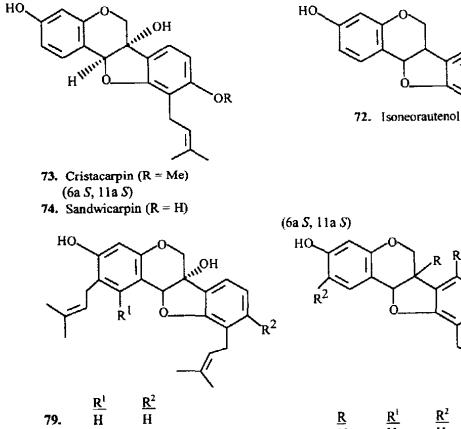
Similar feeding experiments have also shown that the pterocarpan 1 was incorporated into the isoflavans I and II. Vestitol (I) was also incorporated into 1 and II. Accordingly, the pterocarpan (1) and the 2'-hydroxyisoflavan (I) are interconvertible in M. sativa. These incorporation studies [60,61] as well as the results of kinetic feeding experiments with L. phenylalanine [61] suggested that these compounds are synthesized simultaneously from a common intermediate which was proposed to be the intermediate carbonium ion (III).


Similar investigations [62 - 64, 84] of medicarpin (2) of *Trifolium pratense* with labelled precursors have suggested that the biosynthetic pathway of the pterocarpan 5 proceeds via the 7-hydroxy 4'-methoxyisoflavan (Formononetin) followed by 2'-hydroxylation and the reduction to the corresponding isoflavanone. The latter is probably reduced further to the isoflavanol, which in turn can be cyclized to 5.

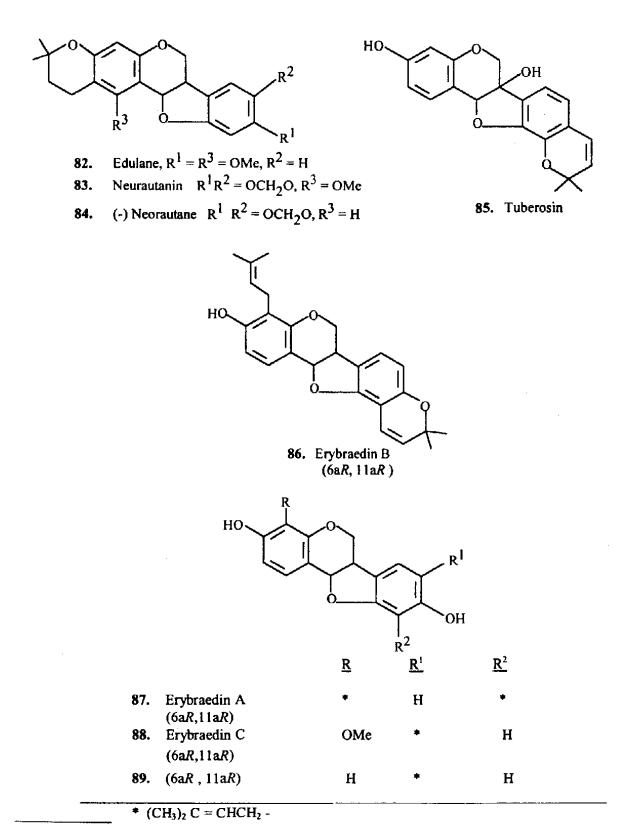
Isoflavone ----> Isoflavonone ---> Isoflavonol ---> Pterocarpan nucleus

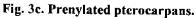


* $(CH_3)_2C = CHCH_2 - , ** (CH_2 = CH-C (CH_3)_2 , *** (geranyl moiety)$ Fig. 3a. Prenylated pterocarpans.


Several 6a-hydroxypterocarpan are formed as phytoalexins by *Glycine max* (soybean) tissues on treatment with a variety of biotic or abiotic agents. These pterocarpans are mainly prenylated (6a S, 11a S)6a-hydroxypterocarpans and include the major phytoalexins goyceollins I-IV (90-93) and glyceollidins (94,95). Incorporation of the daidzein (7,4'-Dihydroxyisoflavone, 7,2',4'-trihydroxyisoflavone, 3,9-dihydroxypterocarpan (1) and glycinol (40) into glyceollins I - III (90-92) are all sufficiently large [65]. Thus, it was assumed that these compounds may be natural precursors of the phytoalexins 90-95 (Fig. 3d). The two pterocarpans 1 and 40 were particularly well incorporated. The incorporation of all precursors tested suggests that

	<u>R</u>	<u>R¹</u>	<u>R²</u>	
68.	H	Н	Η	Neorautenol
57.	н	Н	*	Orientanol C
69.	OMe	Н	*	Gangetin
71.	OMe	OMe	*	Desmodin




 \mathbb{R}^1

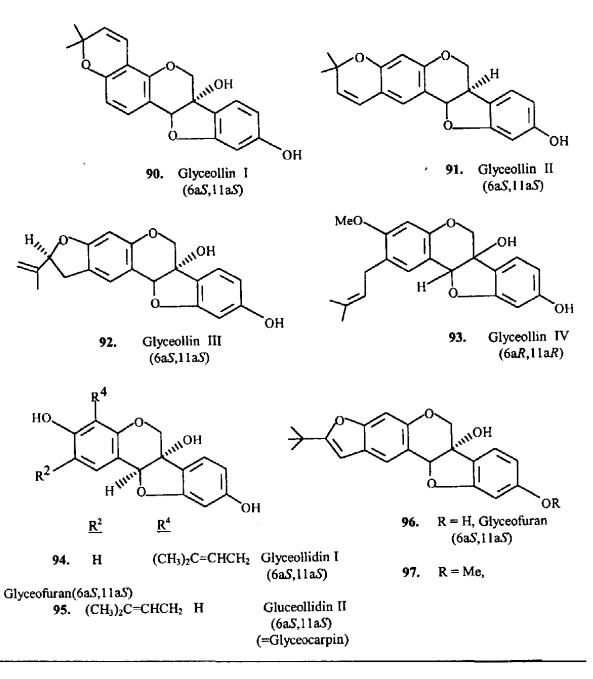

79. 80. 81.	R ^I H H OMe		Erystagallin A Erystagallin B (6aS, 11a S)	75. 76. 77. 78.	<u>R</u> H ОН ОН H	R ⁱ H H OH H	<u>R</u> ² H H H	Phaseoltin
-------------------	---------------------------------	--	--	--------------------------	--------------------------------	-------------------------------------	--------------------------------------	------------

Fig. 3b. Prenylated pterocarpans.

÷

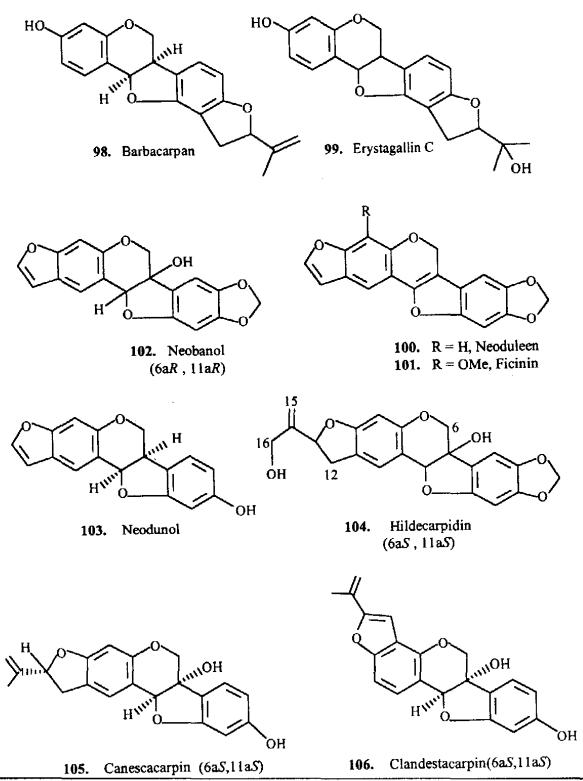
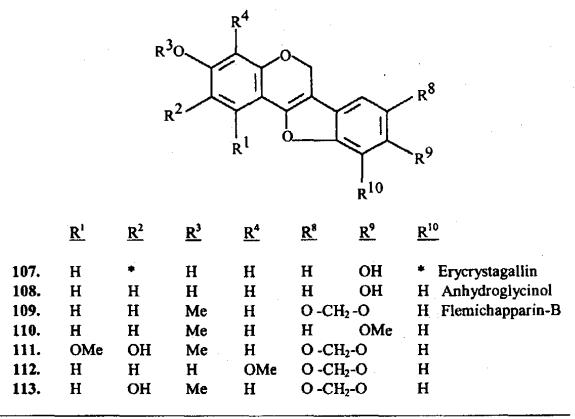
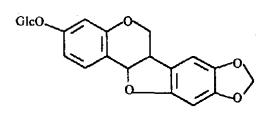
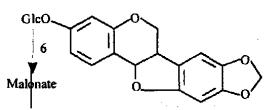




Fig. 3e. Prenylated pterocarpans.

* (CH₃)₂C=CHCH₂ -

Fig. 4. Some 6a, 11a anhydropterocarpanoids.

114. Trifolrhizin


(=1-Maackiain-mono-β-D-glucoside

116. d-Maackiain- mono-β-D-glucoside

117. dl-Maackiain- mono-β-D-glucoside

Fig. 5. Maackiain (29) glucosides.

malonate

115. Trifolrhizin-6-O-

the basic 6a-hydroxypterocarpan (glycinol) is synthesized before any prenylation occurs. This is in agreement with data obtained with phaseollin (75), where prenylation is also delayed until the basic pterocarpan skeleton has been constructed [66]. Glycinol (40) arises from daidzein, which is hydroxylated in the 2' position, then successfully reduced via the corresponding isoflavanone and isoflavanol to give 3,9-dihydroxypterocarpan.

Feeding experiments in $CuCl_2$ treated *Pisum sativum* pods and seedling have indicated excellent incorporation into eight isoflavanoids including the pterocarpan phytoalexins (+) pisatin (41) and (+) maackiain (30) [67].

The biosynthetic pathways of glycinol(40) from *Glycine max* [65] and pisatin(41) from *Pisum sativum* [67] were initially believed to involve direct hydroxylation at 6a, most likely by an oxygenase. However, recent studies on the biosynthesis of phytoalexins of soybean has concluded that the molecular oxygen is the source of the 6a oxygen of glycinol synthesized by soybean [92]. Although, the phytoalexin (+)-(6aR, 11aR)-pisatin are synthesized on treatment of *Pisum sativum* tissues with aqueous CuCl₂, significant quantities of (-) - (6aS, 11aS)-pisatin are produced by supplying (-) - (6aR, 11aR)-maackiain, during the induction process [69]. This study demonstrated that the 6a-hydroxylation of maackiain during the biosynthesis of pisatin, must proceed with retention of configuration at 6a [69] which has also been confirmed in some other instances [70].

The biological reduction sequence is stereospecific. Labelling studies in *Trigonella* foenumgae cum [71] have established that the pterocarpan 2 (6aR, 11aR) was synthesized from 2',7-dihydroxy-4'-methoxy isoflavone via an overall E addition of hydrogen to the double bond. Pea (*Pisum sativum*) plants appear to have reductive enzymes capable of producing (3R) and (3S) isoflavanones via E and Z addition of hydrogen, respectively, [12,69] during the biosynthesis of medicarpin (2). Several other plants are known to constitutively accumulate enantiomeric pterocarpans 70 and 40 [67].

Coumestans

Coumestans are structurally similar to pterocarpans and often co-occur in the same natural sources. The structures of natural coumestans are depicted in Figs. 6 and 7, while their botanical sources are given in Table 2. Like pterocarpans, all these compounds are oxygenated at positions 3 and 9 as can be seen from Figures 6 and 7. Coumestrol (1) has been repeatedly isolated from various plants (Table 2). All natural coumestans are characterized by high melting points with the exception of plicadin 23 which has been recently isolated [72] from *Psoralea plicata*, a plant used in traditional medicine for the treatment of various diseases [73]. Flemichapparin C (9) has been isolated from the roots of *Flemingia chappar* [41] and *Tephrosia hamiltonii* [43]. This coumestans 1, 3, 12-16 were obtained from five *Phaseolus* species (Table 2) either by infection with fungi or treatment with CuCl₂.

Plant species	Compd.	No. M.p. °C	Plant parts	Reference(s)
Leguminosae				
Cladrastis platycarpa (Maxim.)	8		heartwood	[6]
Makino				
Cicer arietinum	2,8		roots	[162]
Dolichos biflorus L.	1, 12	· .	leaves & stems	[88,142]
Eysenhardtia polystachya	9	272	stems and bark	[74]
(Ortego) Sary.				
Flemingia chapper Buch-Ham.	9	272	roots	[41]
Glycine max L.	1			[143-145]
Lotus criticus	15	285-87	roots	[147]
Medicago sativa	1,2,8		seedlings	[63]
	8			[76]
	11	292-294	infected lucerne	[75]
	2			[61,161]
	5	303		[73]
	4	>350		[73]
Pachyrrhizus erosus	24	>350		[160]
Phaseolus aureus	1,3,13,16	5		[149,150]
P. calcaratus	1			[149]
P. coccineus	1,3,14			[151]
P. lunatus	1,12			[149]
P. vulgaris	1			[149]
Psoralea corylifolia	17	300-301*		[154]
	19	242-243	seeds	[154]
	20	236-238*		[154]
	21	232-234*	seeds	[155]
	22	349-351	seeds	[156]
	12		seeds	[159]
Psoralea plicata Del.	23	127		[72]
Sophor afranchetiana Dunn	17	>300	roots	[113]
	18	>300	roots	[114]
Tephrosia hamiltonii	9	272	roots	[43]
	6	318-320	roots	[43]
Tephrosia villosa L.	10		roots	[163]
Trifolium repens	1			[157]
· · · · ·	7	332		[158]

*Characterized as their corresponding acetates.

25

26

25

27

25,26

>310

327-330

298-300

aerial parts

fresh leaves

aerial parts

81]

83]

81]

79,80]

[86]

Asteraceae

Eclipta alba (L) Hassk

Wedelia calendulacea

(= synonyms Eclipta erecta Linn.)

Mutisia acuminata var. hirsuta

3		
2		8
1		9
	10	

No.	1	2	3	4	7	8	9	10	Trivial name
1	-	-	ОН	-	-	_	ОН		Coumestrol
2	-	-	OH	-	-	-	OMe	-	9-O-Methylcoumestrol
3	OH	-	OH	-	-	-	ОН	-	Aureol
4	-	OH	OH	-	÷	-	ОН	_	Sativol
5	-	-	OMe	OH	-	-	OH	-	Lucrenol
6	-	OMe	OH	-	-	-	OH	-	Tephrosol
7	-	-	ОН	-	ОН	-	OMe	-	Trifolioł
8	-	-	OH	-	-	-	0.011.0	-	Medicagol
9	-	-	OMe	-	-	_		-	Flemichapparin-C
10	-	OMe	ОН	-	-	-	O-CH2-O-	-	Tephrol
11	-	-	OH	-	OMe	_	OMe		Wariol
12	-	-	*		-	ОН	-		Psoralidin
13	-	-	ОН	*	-	OH	-		Phaseol
14	-	-	OH	-	-	-	ОН	*	Isosojagol
15	OH	-	ОН	-	-	*	OH	-	isosojagoi
25	OH	-	OMe	-	-	ОН	ОН	-	Wedelolactone
26	OH	-	ОН	-	-	он	он	-	Desmethylwedelol lactone

* (CH₃)₂ C=CHCH₂ -

Fig. 6. Simple coumestans.

The new coumestan 11 was isolated from fungal infected Lucerne foliage (Medicago sativa) [75]. Compounds 7 and 11 are the only representative coumestans having a substituent at position 7. Simple coumestans (1 and 8), in addition to some other coumestans, were also reported from M. sativa [63,76,77]. Recent feeding experiments [61,63,78] have demonstrated that the pterocarpan, medicarpin, (2) and the coumestan (2) are closely related in their biosynthesis and share common flavone and isoflavone precursors.

The first natural cournestan was reported by Govindachari *et.al.*[79] in 1956. These researchers have isolated wedelolactone (25) from the fresh leaves of *Wedelia* calendulacea (synonyms: Eclipta erecta Linn). The cournestan (25) was also reported later from the same natural source [80]. Wedelolactone (25) and its demethylated

derivative (26) were recently reported from *W. calendulacea* and *Eclipta alba* [81], both plants belong to the family, Asteraceae. The two plants are reported to be widely used in India in hepatic enlargement, for jaundice and for other ailments of the liver and gall bladder [80,82]. Furthermore, the glucoside of desmethylwedelolactone(26) was isolated from the leaves of *E. alba* [83]. In fact, the main active principles of the two plants are the coumestans (25) and (26). It has been mentioned that *Eclipta alba* is the best drug for the treatment of the liver cirrhosis and infective hepatitis [81]. Six phenolic compounds were recently reported from *Mutisia acuminata* [86] of the family, Asteraceae. Among these phenolics was the coumestan (27). The latter is abnormal since it lacks the substitution at position 3.

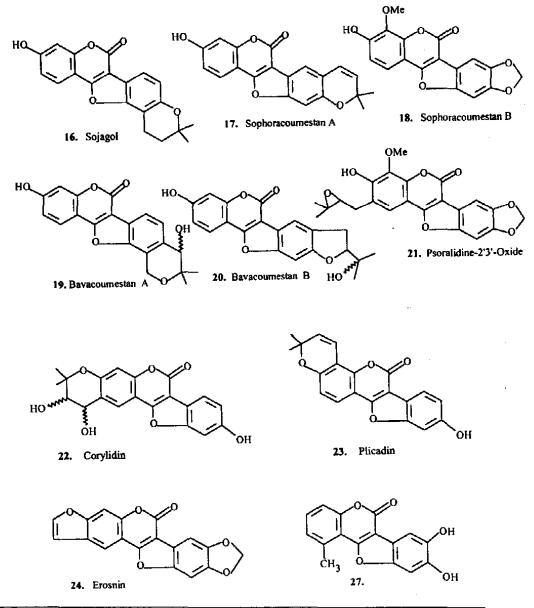


Fig. 7. Some natural coumestans.

Conclusion

It seems that the occurrence of pterocarpanoids in higher plants is restricted to the plants of Leguminosae. This feature may be of chemotaxonomic interest. However, literature survey revealed that the two racemic pterocarpans 3 and 30 occur in the wood of *Osteophelum platyspermum* (DC) Warb., a plant belonging to the plant family Myristicaceae[87]. Natural cournestans (Figs. 6 and 7) were isolated from various leguminous plants (Table 2) with the exception of compounds 25-27.

References

- [1] Al-Hazimi, H.M. and Miana, G.A. "Naturally Occurring Xanthones in Higher Plants and Ferns". J. Chem. Soc. Pak., 12, No. 2 (1990), 174-188.
- [2] Al-Hazimi, H.M. and Basha, R.M. "Phenolic Compounds from Various Artemisia Species". J. Chem. Soc. Pak., 13, No.4 (1991), 277-289.
- [3] Al-Hazimi, H.M. and Al-Khathlan, H.Z. "Naturally Occurring Non-alkaloidal Phenanthrenes". J. Saudi Chem. Soc., 1, No.1 (1997), 47-64.
- [4] Al-Hazimi, H.M. and Al-Khathlan, H.Z. "Stilbenes and Bibenzyls in Higher Plants". J. King Saud Univ. (Sci.), 9, No.2 (1997), 161-188.
- [5] Wong, E. "The Isoflavonoids". Fortschr. Chem. Org. Naturst., 34 (1977), 187 192.
- [6] Mizuno, M., Tanaka, T., Katsuragawa, M., Saito, H. and Iinuma, M. "A New Pterocarpan from the Heartwood of *Cladrastis platycarpa*". J. Nat. Prod., 53, No. 2 (1990), 498-499.
- [7] Carel A. X., Sicherer, F. and Roetman, A.M. "The R, S Nomenlature of Pterocarpan Streochemistry". *Phytochemistry*, 19 (1980), 485-486.
- [8] Ito, S., Fujise, Y. and Mori, A. "Absolute Configuration of Pterocarpanoids". J.Chem.Soc. Chem. Comm., 23, (1965), 595-596. CA, 64: 6632a.
- [9] Subamas, A., Osluna, Y. and llildno. "Isoflavans and a Petrocarpan from Astragalus mongholicus". *Phytochemistry*, 30, No.8 (1991), 2777-2780.
- [10] Ohashi, H., Takeuchi, H., Umemura, S. and Imamura, H. "The Extractives of Japanese Cladrastis Species. XI". Mokuzai Gakkaishi, 28, No.7 (1982), 463 - 472. CA, 97 : 146373y.
- [11] Cook, J.T., Ollis, W.D., Sutherland, I.O. and Gottlieb. O.R. "Pterocarpans from Dalbergia spruceana (Part 5)". Phytochemistry, 17, No. 8 (1978), 1419-1422.
- [12] Stoessl, A. "Inermin Associated with Pisatin in Peas Inoculated with the Fungus Monilinia fruticola". Can. J. Biochem., 50 (1972), 107 111.
- [13] Pueppke, S.G. and VanEtten, H.D. "Identification of Three New Pterocarpans (6a,11a-dihydro-6Hbenzofur[3,2-c][1]benzopyrans) from *Pisum sativum* Infected with *Fusarium solani* f. sp. pisi". J. Chem. Soc. Perkin Trans. 1, (1975), 946 - 948.
- [14] Pueppke, S.G. and VanEtten, H.D. "Accumulation of Pisatin and Three Additional Antifungal Pterocarpans in *Fusarium* Solani-infected Epicotyls of *Pisum sativum*". Physiol. *Plant Pathol.*, 8 (1976), 51-57.
- [15] Bilton, J.N., Debnam, J.R. and Smith, I.M. "6a-Hydroxypterocarpans from Red Clover." . Phytochemistry, 15, No.9 (1976), 1411 - 1412.
- [16] Baruah, P., Barua, N.C., Sharma, R.P., Baruah, J.N., Kulanthaivel, P. and Herz. W. "Flavonoids from *Millettia pulchra.*" *Phytochemistry*, 23, No.2 (1984), 443-447.
- [17] Breytenbach, J.C., Leipoldt, J.G., Rall, J.G.H., Roux, D.G. and Levendin, D.C. "Absolute Configuration and Confirmation of a(-)- pterocarpan, (-)-edunol". J.S. Afr. Chem. Inst., 36, No.4 (1983), 4-6.
- [18] Mayase, T., Ohtsubo, A., Ueno, A., Noro, T., Kuroyanagi, M. and Fukushima, S. "Studies on the Pterocarpans from *Melilotus alba* Desr". *Chem. Pharm. Bull.*, 30, No.6 (1982), 1986-1991.
- [19] Filho, R. B., De Moraes, M.P.L. and Gottlieb, O.R. "Pterocarpans from Swartzia laevicarpa". *Phytochemistry*, 19 (1980), 2003-2006.
- [20] Pelter, A. and Amenechi, P.I. "Isoflavanoids and Pterocarpanoids Extractives of Lonchocarpus laxiflorus." J. Chem. Soc. (C), (1969), 887-896.

- [21] Preston, N.W. "Induced Pterocarpans of *Psophocarpus tetragonolobus*". *Phytochemistry*, 16(1977), 2044-2045.
- [22] Ingham, J.L. and Markham, K. "Tephrocarpin, a New Pterocarpan Phytoalexin from *Tephrosia* bidwilli and a Structure Proposal for Acanthocarpin". *Phytochemistry*, 21 (1982), 2969 2972.
- [23] Purushothaman, K. K., Kishore, V.M., Narayanaswami, V. and Connolly, J.D. "The Structure and Stereochemistry of Gangetin, a New Pterocarpan from *Desmodium gangeticum* (Leguminosae)". *J.Chem. Soc.* (C), (1971), 2420 - 2422.
- [24] Purushothaman, K. K., Chandrasekharan, S., Balankrishna K. and Connolly, J.D. "Gangetinin and Desmodin, Two Minor Pterocarpanoids of *Desmodium gangeticum*". *Phytochemistry*, 14 (1975), 1129-30.
- [25] Lyne, R.L., Mulheim, L.J. and N.T.Keen. "Novel Pterocarpanoids from Glycine Species". Tetrahedron Lett., 22, No. 26 (1981), 2483-2484.
- [26] Oberholzer, M.E., Rall, G.J.H. and D.G.Roux. "New Natural Rotenoid and Peterocarpanoid Analogues from *Neorautanenia amboensis*". *Phytochemistry*, 15, No. 4 (1976), 1283-1284.
- [27] Brink, A.J., Rall, G.J.H. and J.C.Breytenbach. "Pterocarpans of Neorautanenia edulis and N. amboensis." Phytochemistry, 16, No.2 (1977), 273-276.
- [28] Rall, G.J.H., Brink, A.J. and J.P.Engelbercht. "Chemical Constituents of Neorautanenia edulis". J.S. Afr. Chem. Inst., 25, No. 1(1972), 1-7.
- [29] Rall, G.J.H., Brink, A.J. and Engelbrecht, J.P. "Neorautanenia Pterocarpans. Isolation and Structure of Edulenol, a New pterocarpan from Neorautanenia edulis". J.S. Afr. Chem. Inst., 25, No.2 (1972), 131-139.
- [30] Brink, A.J., Rall, G.J.H. and Engelbrecht, J.P. "Structure of Some Minor Pterocarpans of Neorautanenia edulis". Phytochemistry, 13 (1974), 1581-1585.
- [31] Oberholzer, M.E., Rall, G.J.H and Roux, D.G. "The Cooccurrence of 12a-Hydroxy and 12a-Methylrotenoids". *Tetrahedron Lett.*, 25, (1974), 2211 - 2214.
- [32] Van Duuren, B.L. "Chemistry of Edulin. Neorautanenia and Related Compounds from Neorautanenia edulis". J.Org. Chem., 26 (1961), 5013 5020.
- [33] Ingham, J.L. "Isoflavonoid Phytoalexins of Yam Bean (Pachyrrhizus erosus)". Z. Naturforsch., 34C, Nos. 9-10 (1979), 683 -688.
- [34] Brink, C.V.D.M., Nel, W., Rall, G.J.H., Weitz, J.C. and Pachier, K.G. "Neorautanenia Isoflavonoids II. Neofolin and Ficinin, Two Furoisoflavonoids from Neorautanenia ficifolia." J. S.Afri. Chem. Inst., 19 (1966), 24 - 30.
- [35] Brink, C.V.D.M., Engelbrecht, J.P. and Graham, D.E. "Neorautanenia Isoflavonoids (IV)" J. S.Afri. Chem. Inst., 23 (1970), 24-33.
- [36] Manjary, F., Petitjean, A., Conan, J-Y., Martin, M.T., Frappier, F., Rasoanaivo, P. and Ratsimamanga-Urverg S. "A Prenylated Pterocarpan from *Mundulea striata*". *Phytochemistry*, 33, No. 2(1993), 515 - 517.
- [37] Burden, R.S., Bailey, J.A. and Vincent, G.G. "Metabolism of Phaseollin by Collectrichum lindemuthianum". Phytochemistry, 13 (1974), 1789-1791.
- [38] Perrin, D.R. "Structure of Phaseolin". *Tetrahedron Lett.*, 15, Nos. 1-2 (1964), 29 35. CA, 60: 11045g.
- [39] Perrin, D.R., Whittle, C.P. and Batterham, T.J. "The Structure of Phaseollidin". Tetrahedron Lett., 17 (1972), 1673 1676.
- [40] Cruickshank, I.A.M., Biggs, D.R., Perrin, Dawn R. and Whittle, C.P. "Phaseollin and Phaseollidin Relations in Infection-droplets on Endocarp of *Phaseolus vulgaris*". *Physiol. Plant Pathol.*, 4, No.2 (1974), 261 - 276.
- [41] Adityachaudhury, N. and Gupta, P.K. "A New Pterocarpan and Coumestan in the Roots of *Flemingia chappar*". *Phytochemistry*, 12(1973), 425 428.
- [42] Roy, M., Bhattacharaya, P.K., Pal, S., Chaudhury, A. and Adityachaudhury, N.
 "Dehydrodihydrorotenone and Flemichapparin-B I in *Tephrosia candida*". *Phytochemistry*, 26, No.8 (1987) : 2423-2424.
- [43] Rajani, P. and Sharma, P. "A Cournestone from the Roots of *Tephrosia hamiltonii*". *Phytochemistry*, 27, No.2 (1988), 648-649.
- [44] Mitscher, L.A., Ward, J.A., Drake, S. and Rao, G.S. "Antimicrobial Agents from Higher Plants. Erycristagallin, a New Pterocarpan from the Roots of the Bolivian Coral Tree, *Erythrina crista*-

galli". Heterocycles, 22, No.8 (1984), 1673 -1675.

- [45] Bredenberg, J.B-Son and Hietala, P.K. "Investigation of the Structure of Trifolirhizin an Antifungal Compound from *Trifolium pratense*". Acta Chem. Scand. 15 (1961), 696 699.
- [46] Shibata, S. and Nishikawa, Y. "Constituents of Japanese and Chinese Crude Drugs, VII. Constituents of the Roots of Sophora subprostrata and S. japonica". Chem. Pharm. Bull., 11 (1963),167-177. CA, 57: 7384c.
- [47] Ingham, J.L. In: *Phytoalexins*. J.A.Baily and J.W.Mansfield (Eds.), New York: Wiley, 1982, p. 21.
- [48] Heuvel, J.V. and Glazener, J. A. "Comparative Abilities of Fungi Pathogenic and Nonpathogenic to the Bean(*Phaseolus vulgaris*) to Metabolize Phaseollin". *Neth. J. Plant Pathol.*, 81, No.4 (1971), 125 - 137.
- [49] Dagne, E., Leslie Gunatilaka, A.A., Kingston, D.G.I., Alemu, M., Hofmann, G. and Johnson, R.K. "Two Bioactive Pterocarpans from *Erythrina burana*". J.Nat. Product, 56, No.10 (1993), 1831-1834.
- [50] Mitscher, L.A., Okwute, S.K., Gollapudi, S., Drake, S.D. and Avona, E. "Antimicrobial Pterocarpans of Nigerian Erythrina mildbraedii". Phytochemistry, 27, No.11(1988), 3449-3452.
- [51] Cruickshank, I.A.M. "The Antimicrobial Spectrum of Pisatin". Aust. J.Biol. Sci., 15(1962),147-159.
- [52] Kobayashi, A., Akiysma, K. and K.Kawazu. "A Pterocarpan,(+)-2-Hydroxypisatin from *Pisum* sativum". Phytochemistry, 32, No. 1(1993), 77-78.
- [53] Wong, E. and Grisebash, H. "Role of Chalcone and Flavanone in Biosynthesis of Flavonoids". *Phytochemistry*, 8, No.8(1969), 1419-1426. CA, 71: 88531y.
- [54] Bandara, B.M.R., Kumar, N.S. and Samaranayake. Journal of Ethnopharmacology, 25 (1989), 73-79.
- [55] Robeson, D.J. and Harborne, J.B. "Biosynthesis of Isoflavonoids Phytoalexins in Lathyrus species". Phytochemistry, 19, No.7(1980), 2359 - 2366.
- [56] Lwande, W., Bentley, M.D., Makfoy, C., Legemwa, F.N., Hassanali, A. and Nyandat, E. "A New Pterocarpan from the Roots of *Tephrosia hildebrandtii*". *Phytochemistry*, 26, No.8(1987), 2425 -2426.
- [57] Lu, G., Lu, S., Zhang, G., Xu, S., Li, D. and Huang, Q. "Isolation and Identification of Flavone-like Constituents from Mangolian Milkvetch(Astragallus mongoholicus)". Zhongcaoyao, 15, No.10(1984), 452 - 454.
- [58] Wong, E. The Flavonoids. In: J.B. Harborne, T.J.Mabry and H.Mabry (Eds.). London: Chapman and Hall, 1975.
- [59] Cornia, M. and Merlim, L "A Possible Chemical Analogy for Pterocarpan Biosynthesis". J. Chem. Soc., Chem. Comm. (1975), 428-429
- [60] Dewick, P.M. and Martin, M. "Biosynthesis of Isoflavanoids in Medicago sativa". J. Chem. Soc., Chem. Comm., (1976), 637-638.
- [61] Dewick, P.M. and Martin, M. "Biosynthesis of Pterocarpan and Isoflavan Phytoalexins in Medicago sativa: The Biochemical Interconversion of Pterocarpans and 2'-Hydroxyisoflavans". Phytochemistry, 18, No. 2 (1979), 591-596.
- [62] Dewick, P.M. "Biosynthesis: Chalcone and Isoflavone Precursors of Demethylhomopterocarpin and Maackiain in *Trifolium pratense*". *Phytochemistry*, 14 (1975), 979 982.
- [63] Dewick, P.M. and Martin, M. "Biosynthesis of Pterocarpan, Isoflavan and Cournestan Metabolites of Medicago sativa : Chalcone, Isoflavone and Isoflavanone Precursors". Phytochemistry, 18 (1979), 597 - 602.
- [64] Dewick, P.M. The Flavonoids, Advances in Research Since 1980. J.B. Harborne (Ed.), London: Chapmann and Hall, 1988.
- [65] Banks, S.W. and Dewick, P.M. "Biosynthesis of Glyceollins I, II and III in Soybean". *Phytochemistry*, 22, No.12(1983), 2729-2733.
- [66] Dewick, P.M. and Steele, M.J. "Biosynthesis of the Phytoalexin Phaseollin in *Phaseolus vulgaris*" .*Phytochemistry*, 21, No. 7 (1982), 1599 - 1903.
- [67] Banks, S.W. and Dewick, P.M. "Biosynthesis of the 6a-Hydroxypterocarpan Phytoalexin Pisatin in *Pisum sativum*". *Phytochemistry*, 21 No.9(1982), 2235 2242.
- [68] Matthews, D.E., Weiner, E.J., Matthews, P.S. and VanEtten, H.D. "Role of Oxygenases in Pisatin Biosynthesis and in the Fungal Degradation of Maackiain." *Plant Physiol.*, 83 (1987), 365-370.
- [69] Bank, S.W. and Dewick, P. M. "(-)-Pisatin, an Induced Pterocarpan Metabolite of Abnormal

116

Configuration from Pisum sativum". Phytochemistry, 21, No7(1982), 1605 - 1608.

- [70] Ingham, J.L. and Markham, K. R. "Identification of the Erythrina Phytoalexin Cristacarpin". Phytochemistry, 19 (1980), 1203 - 1207.
- [71] Dewick, P.M. and Ward, D."Stereochemistry of Isoflavone Reduction during Pterocarpan Biosynthesis: an Investigation using Deuterium Nuclear Magnetic Resonance Spectroscopy". J. Chem.Soc. Chem.Comm. (1977), 338-339.
- [72] Rasool, N., Khan, A.Q., Ahmad, V.U. and Abdul Malik. "A Benzoquinone and A Cournestan from *Psoralea plicata*". *Phytochemistry*, 30, No 8(1991), 2800-2803.
- [73] Spencer, R., Bickoff, E.M., Lundin, R. E. and Knuckles, B. E. "Lucernol and Sativol, Two New Coursestans from Alfalfa (*Medicago sativa*)". J.Agr. Food Chem., 14, No.4(1966), 162 165.
- [74] Burns, D.T., Dalgamo, B.G., Gargan, P.E. and Grimshaw, J. "An Isoflavan and A Coumestan from *Eysenhardtia polystachya*". *Phytochemistry*, 23, No.1(1984), 167-169.
- [75] Biggs, D.R. and Shaw, G.J. "Wariol, a New Cournestan from *Medicago sativa*". *Phytochemistry*, 19 (1980), 2801-2802.
- [76] Wong, E. (1975) The Flavonoids. J.B.Harborne, T.J. Mabry. and H. Marby (Eds.). London:, Chapman and Hall, 1975.
- [77] Abreu Matos, F.J., Gottlieb, O.R. and Andrade C.H.S. "Flavonoids from Dalbergia ecastophyllum". Phytochemistry ,14 (1975) , 825 -826.
- [78] Martin, M. and Dewick, P.M. "Biosynthesis of Pterocarpan, Isoflavan and Coumestan Metabolites of *Medicago sativa*: The Role of an Isoflav-3-ene". *Phytochemistry*, 19 (1980), 2341-2346.
- [79] Govindachari, T.R. and Garajan, B.R. "Chemical Examination of Wedalia calendulacea. Part I. Structure of Wedelolactone". J. Chem. Soc., (1956), 629 632.
- [80] Wagner, H., Geyer, B., Kiso, Y., Hikino, H. and Rao, G.S. "Cournestans as the Main Active Principles of the Liver Drugs *Eclipta alba* and *Wedelia calendulacea*". *Planta Medica*, 52 (1986), 370 373.
- [81] Wagner, H. and Fessler, B. "In-Vitro-5-lipoxygenasehemmung durch *Eclipta alba* Extrakte und das Cournestan-denivat Wedelolacton". *Planta Medica*, 52 (1986), 374 377.
- [82] Chopra, R.N., Nayar, S.L. and Chopra, I.C. Glossary of Indian Medicinal Plants. New Delhi: C.S.I.R., 1956.
- [83] Bhargava, K. K., Krishnaswamy N.R. and Seshadri T.R. "Geometrical Inversion in the Acids Derived from Cournarins X. 4-Methyl-3-phenylcournarin Derivatives and Other Spectral Characterized". Indian J. Chem., 10 (1972), 810-814.
- [84] Al-Douri, N.A. and Dewick, P.M. "Biosynthesis of the 3-ethylchromone Phytoalexin Lathodoratin in Lathyrus odoratus". Phytochemistry, 27, No.3(1988), 775-783.
- [85] Burden, R.S., Bailey ,J.A. and Dawson, G.W. "Structure of Three New Isoflvanoids from phaseolus vulgaris Instead with Tobacco Neerosis Virus". Tetrahedron Lett., No. 41 (1972), 4175-4178.
- [86] Daily, A., Seligmann, O., Nounenmacher, G., Fessler, B., Wong, S. and Wagner, H. "New Chromone, Coumarin and Coumestan Derivatives from *Mutisia acuminata* var. *hirsuta*". *Planta Medica*, 54 (1988), 50 - 52.
- [87] Braz Fo, R., Gottlieb, O.R., De Moraes, A.A., Pedreira, G., Pinho, S.L.V., Magalhaes, M.T. and Ribeiro, M.N. "The Chemistry of Brazilian Myristicaceae. IX. Isoflavonoids from Amazonium Species". Lloydia, 40, No. 3(1977), 236 - 238.
- [88] Keen, N.T. and Ingham, J.L. "Phytoalexins from Dolichos biflorus". Z. Naturforsch., 35C, Nos. 11-12 (1980), 923 - 926. CA, 94: 99951 m.
- [89] Mitscher, L. A., Gerlach, D.C., Drake, S.D., Vehz, E.A. and J.A.ward. "Erycristin, a New Antimicrobial Pterocarpan from *Erythrina crista-galli*". *Phytochemistry*, 27, No.2(1988), 381-385.
- [90] Ingham, J.L. "Induced Isoflavonoids of Erythrina sandwicensis". Z.Naturforsch., Tiel C, 35 (1980), 384-386.
- [91] Lyne, R.L. and Mulheim, L.J. "Minor Pterocarpanoids of Soybean". Tetrahedron Lett., No. 34 (1978), 3127 3128.
- [92] Matthews, D.E., Platmer, R.D. and VanEtten, H.D. "The 6a Oxygen of the Pterocarpan Glycinol is Derived from Molecular Oxygen". *Phytochemistry*, 28, No.1(1989), 113-115.
- [93] Dewick, P.M. "Biosynthesis of Pterocarpan Phytoalexins in *Trifolium pratense*". *Phytochemistry*, 16 (1977), 93 97.
- [94] Burden, R.S. and Bailey, J.A. "Structure of the Phytoalexin from Soybean". Phytochemistry, 13

(1975), 1389 - 1390.

- [95] Lyne, R.L., Mulheim, L.J. and Leworthy, D.P. "New Pterocarpinoids Phytoalexins of Soyabean" J. Chem. Soc., Chem. Comm. (1976), 497-499.
- [96] Zaliringer, U., Sclialler, E. and Grisebach, H., "Natural pterocarpanoids from *Glycine max*." Z. Naturforsch., 36C (1981), 234 -237
- [97] Ingham, J.L., Keen, N.T., Mulheim, L.J. and lyne, R.L. "Inducibly- formed Isoflavonoids from Leaves of Soybean". *Phytochemistry*, 20, No.4 (1981), 795 798.
- [98] Ingham, J.L. and Dewick, P.M. "A New Isoflavan Phytoalexin from Leaflets of Loutus hispidus." Phytochemistry, 18 (1979), 1711 - 1714.
- [99] Miller, R.W., Kleiman, S.D., Powell R.G. and Putnan, A.R. "Germination and Growth Inhibitors of Alfalfa". J. Nat. Product, 51, No. 3(1988), 332-334.
- [100] Miller, R.W., Spencer, G.F. and Putnan, A.R. "(-)-5-Methoxysativan, a New Isoflavan from Alfalfa". J. Nat. Product, 52 (1989), 634-636
- [101] Spencer, G. F., Jones, B.E., Plattner, R.D., Bamekow, B.E., Brinen, L.S. and Clardy, J. "A Pterocarpan and Two Isoflavans from Alfalfa". *Phytochemistry*, 30, No.12 (1991), 4147 4149.
- [102] Ingham, J.L. "Fungal Modification of Pterocarpan Phytoalexins from *Melilotus alba* and *Trifolium* pratense". Phytochemistry, 15, No.10(1976), 1489 1495.
- [103] Harper, S.H., Kemp, A.D., Underwood, W.G.E. and Campell, RV.M. "Pterocarpanoid Constituents of the Heartwoods of *Pericopsis angolensis* and *Swartzia madagascariensis*". J. Chem. Soc. (C), (1969) 1109 1116.
- [104] Bredenberg, J.B-Son and Hietala, P.K. "Confirmation of the Structure of Trifolirhizin". Acta Chem. Scand., 15 (1961), 936 937.
- [105] Dewick, P.M. and Ward, D. "Isoflavone Precursors of the Pterocarpan Phytoalexin Maackian in *Trifolium pratense*". *Phytochemistry*, 17(1978), 1751-1754.
- [106] De alencar, R., Filho, B. and Gottlieb, O.R. Phytochemistry, 11(1972), 1517.
- [107] Redman, B.T. "Spectroscopic Studies on Some Natural Pterocarpan." *Ph.D.Thesis*, *The University* of Sheffield, England, 1968.
- [108] Brink, D.R., Whittle, C.P. and Batterham, T.J. "The Structure of Phaseollidin". Tetrahedron Lett., No. 17 (1972), 1673-1976.
- [109] Wu, Li J., Miyase, T., Ueno, A., Kuroyanagt, M., Noro, T. and Fukushina, S. "Kushenin from the Roots of Sophora flavessens Aiton". Chem. Pharm. Bull., 33, No.8 (1985), 3231-323 6.
- [110] Yagi, A., Fukunaga, M., Okuzako, N., Mifuchi, I. and Kawamoto, F. "Antifungal Substances from Sophora flavescens". Slioyskugaku Zassni, 43 (1989), 343-347.
- [111] Yamamoto, H., Ichimura, M., Tanaka, T., Iinuma M. and Mizwio M. "A Trifolirhizin Malonate from Sophora flavescens var. angustifolia and Its Stability". Phytochemistry, 30, No.5 (1991), 1732 -1733.
- [112] Yamamoto, H., Kawai, S., Mayiimi, J. T., Tanaka, T., Jinuma, M. and Mizuno, M., Z. "Studies on the Constituents of Sophora flavescens Aiton." Naturforsch., Teil C, 46 (1991), 342 347.
- [113] Komatsu, M., Yokoe, I. and Shirataki, Y. "Studies on the Constituents of Sophora Species XIV. Constituents of the Roots of of Sophora franchetiana Dunn". Chem. Pharm. Bull., 29, No.2 (1981), 532 - 538.
- [114] Komatsu, M., Yokoe, I. and Shirataki, Y. "Studies on the Constituents of Sophora species XV. Constituents of the Roots of of Sophora franchetiana Dunn". Chem. Pharm.Bull., 29, No. 7(1981), 2069 - 2072.
- [115] Ingham, J.L. and Dewick, P.M. "Sparticarpin: A Pterocarpan Phytoalexin from Spartium junceum". Z. Naturforsch., 35C, Nos. 3-4(1980), 197-200.
- [116] Donnelly, D.M.X. and Fitzgerald, M.A. "Pterocarpanoids Constituents of Swartzia leiocolycina". *Phytochemistry*, 10, No.12(1971), 3147 3151.
- [117] Formiga, M.D., Gottlieb, O.R., Mendes, P.H., Koketsn, M., Allmeida, M.E.L., Perecira, M.O. and Magalhaes, M.T. "Constituents of Brazilian Leguminosae". *Phytochemistry*, 14 (1975), 828-829.
- [118] Rao, E.V. and Raju, N.R. "Two Flavonoids from Tephrosia purpurea". Phytochemistry, 23, No.10(1984), 2239 -2242.
- [119] Ingham, J.L. and Dewick, P.M. "6-Demethylvignafuran as a Phytoalexin of Tetragonolobus maritimus". Phytochemistry, 17(1978), 535-538.
- [120] Ingham, J.L. and Tahara, S."Isoneorautenol and Other Pterocarpan Phytoalexins from Calopogonium

mucunoides". Z. Naturforsch. (C), 40 (1985), 482-489

- [121] Kamat, V.S., F. IKubo, V.C. and Nakanishi, K. "Antimicrobial Agents from an East African Medicianal Plant *Erythrina abyssinica*". *Heterocycles*, 15 (1981), 1163-1170.
- [122] Mitscher, L.A., Drake, S., Gollapudi, S.R and Okwute, S.K. "A Modern Look at Folklore Use of Antiinfective Agents." J.Nat. Product, 50 (1987), 1025-1028.
- [123] Weinstein, L.I., Hahn, M.G. and Albershein, P. "Host-pathogen Interaction.18. Isolation and Biological-activity of Glycinol, a Pterocarpan Phytoalexin Synthesized by Soybeans". *Plant Physiol.*, 68 (1981), 358 - 363.
- [124] Keen, N.T. and Kennedy, B.W. "Hydroxyphaseollin and Related Isoflavanoids in the Hypersensitive Resistance Response of Soybeans Against Pseudomonas Glycinea". *Physiol. Plant Pathology*, 4 (1974), 173-186.
- [125] Keen, N.T. "Phytoalexins Efficient Extraction from Leaves by a Facilitated Diffusion Technique." *Phytopathology*, 68 (1978), 1237 - 1239.
- [126] Gomes, C.M., Gottlieb, O.R., Marini Bettelo, B.G., Delle, M.F. and Polhill, R.M., Plant Chemotaxonomic and Phylogeny. Part XV. "Systematic Significance of Flavonoids in Derris and Lonchocarpus". Biochem. Syst. Ecol., 9, Nos.2-3(1981), 129-147.
- [127] Perrin, D.R. and Bottomley, W. "Studies on Phytoalexins V. "The Structure of Pisatin from Pisum sativum L". Aust. J.Biol. Sci., 16 (1963), 1919 - 1922.
- [128] Aragao Craviero, A. and Gottlieb, O.R. "Pterocarpans from *Platymiscium trinitatis*". *Phytochemistry*, 13 (1974), 1629 1630.
- [129] Bezuidenhoudt, B.C.B., Brandt, E. and Ferreira, D. "Flavonoids Analouges from *Pterocarpus* species". *Phytochemistry*, 26, No.2(1987), 531 535.
- [130] Joshi, B.S. and Kamat, V.N. "Tuberosin, a New Pterocarpan from Pueraria tuberosa DC.". J. Chem. Soc., Perkin Trans 1, (1973), 907 -911.
- [131] Joshi, B.S., Kamat, V.N. and Govindachari, T. " Structure of Tuberosin, a New Pterocapan from *Puetaria tuberosa*". Indian J. Chem., 10, No.1(1972),1112-1116.
- [132] Cocker, W., Dahl, T., Dempsey, C. and McMurry, T.B.H. "Extractives from Woods. Part I. Extractives from Andira inermis(Wright) H.B.K.". J. Chem. Soc. (1962), 4906 - 4908.
- [133] Suginome, H., "Oxygen Heterocycles. A New Isoflavanone from Sphora japonica L.". J. Org. Chem., 34 (1959), 1655-1662.
- [134] King, F.E., Cotteril, C.B., Godson, D.H., Jurd, L. and King, T.J. "The Chemistry of Extractives from Hardwoods.13. Colourless Constituents of *Pterocarpus* Species". J. Chem. Soc. (1953),3693-3697.
- [135] Cazeneuve, Chem. Ber., 7(1974), 798 (Reference 7 in ref.132).
- [136] Suginome, H. "Oxygen Heterocycles. Maackiain, a New Naturally Occurring Chromanocoumaran." Experientia, 18 (1962), 161-163.
- [137] Deshpande, V.H. and Shastri, R.K, "Phenolics of Albizzia lebbek, A. amara, and A. procera" Indian J. Chem., Sect. B, 15, No.3(1977), 201 204.
- [138] McGookin, A., Robertson, A. and Whalley, W.B. "Chemistry of the "Insoluble Red" Woods I. Pterocarpin and Homopterocarpin". J. Chem. Soc., (1940), 787 - 795.
- [139] Bredenberg, J.B. and Shoolery, J.N. "Revised Structure of Pterocarpin". Tetrahedron Lett., 9(1961), 285-288.
- [140] Perrin, D.R. and Bonomley, W. "Studies on Phytoalexins V. The Structure of Pisatin from Pisum sativum L.". J.Amer. Chem. Soc., 84 (1962), 1919-1925.
- [141] Bevan, C.W.L., Birch, A.J., Moore, B. and Mukerjee, S.K. "A partial Synthesis of (+) -pisatin : Some Remarks on the Structure and Reactions of Pterocarpin". J. Chem. Soc., (1964), 5991-5995.
- [142] Ingham, J.L., Keen, N.T., Markham, K. R. and Mulheirn, L.J. "Dolichins A and B, Two Pterocarpans from Bacteria-treated Leaves of *Dolichos biflorus*". *Phytochemistry*, 20, No.4(1981), 807 - 909.
- [143] Keen, N.T., Zaki, N.T. and Sims, J.J. "Biosynthesis of Hydroxyphaseollin and Isoflavonoids in Disease Resistant Soybeen Hypocotyls". *Phytochemistry*, 11 (1972), 1031-1034.
- [144] Banks, S.W. and Dewick, P.M. "Biosynthesis of Glyceollins I, II and III in Soybean". *Phytochemistry*, 22, No. 12(1983), 2729-2733.
- [145] Bailey, J.A., Burden, R.S., Mynen, A. and Brown, C. "Metabolism of Phaseollin by Septonianodorum and Other Non-pathogens of phaseolus vulgaris." Phytochemistry, 16(1977), 1541-1544.
- [146] Mizuno, M., Tamura, K., Tanaka, T. and Linuma, M. "Chemotaxonomy of the Genus Euchresta.3.

The New Flavonoids in the Roots of *Euchresta japonica*". Chem. Pharm. Bull., 37 (1989), 195-196.

- [147] Mahmoud, Z.F., Amer, M.E., Abdel Kader, M.S. and Abdel-Salam, N.A. "A Coursetan from Lotus creticus". Phytochemistry, 29, No. 2(1990), 355-356.
- [148] Shaw, G.J., Yates, M.K. and Biggs, D. "Synthesis and Structural Proof of Wariol, A New Cournestan from Medicago sativa". Phytochemistry, 21(1982), 249-250.
- [149] Ingham, J.L. "Naturally Occurring Isiflavonoids(1855-1981)". Prog. Chem. Org.Nat. Prod., 43(1983), 1-266.
- [150] O'Neill, M.J. "Aureol and Phaseol, Two New Cournestans from *Phaseolus aureus* Roxb.". Z. Naturforsch., Teil C, 38 (1983), 698 700.
- [151] O'Neill, M.J., Adesanaya, S.A. and Roberts, M.F. "Isosojagol, A Coumestan from *Phaseolus coccineus*". *Phytochemistry*, 23, No. 11(1984), 2704 2705.
- [152] Abdel-Hay, F.M., Mustafa, E.A. and Fayez, M.B.E. "Natural Coumarins. IX. Mass Spectrometric Evidence for the Structure of Psoralidin." *Rec. Trav. Chem. Pays-Bas*, 86(1967), 920. CA, 68:12075f.
- [153] Zilg, H. and Grisebach, H. "Biosynthesis of Isoflavones 17. Identification and Biosynthesis of Coursestanes in Soja hispida". Phytochemistry, 7 (1968), 1765-1772.
- [154] Gupta, S., Jha, B.N., Gupta, G.K., Gupta, B.K. and Dhar, K.L., "Cournestans from Seeds of *Psoralea corylifolia*". *Phytochemistry*, 29, No.7(1990), 2371 2373.
- [155] Gupta, B.K., Gupta, G.K., Dhar, K.L. and Atal, C.K. "Psoralidin Oxide, a Cournestan from the Seeds of *Psoralea cordylifolia*." *Phytochemistry*, 19(1980), 2232 2233.
- [156] Gupta, G.K., Dhar, K.L. and Atal, C.K. "Isolation and Constitution of Corylidin, A New Cournestrol from the Fruits of *Psoralea corylifolia*". *Phytochemistry*, 16(1977), 403-404.
- [157] Bickoff, E.M., Booth, A.N., Lyman, R.L., Livingston, A.L., Thompson, C.R. and Klioler, G.O. "Isolation of new Estrogen from ladino Clover." J. Agr. Food Chem., 6(1958), 536.
- [158] Livingstou, A.L., Bickoff, E.M., Lundin, R.E. and Jurd, L., Trifoliol, A New Cournestan from Ladino Clover." Tetrahedron, 20, No. 8(1964), 1963 1970.
- [159] Dattagupta, P.C., Khastgir, H.N. and Sengupta, P. London: Chem. Ind., 1960, 48.
- [160] Eisenbeiss, J. and Sclimid, H. "Structure of Erosnin(Norton and Hansberry s'Compound I". Helv. Chim. Acta, 42 (1959), 61-66.
- [161] Bickoff, E.M., Livingston, A.L., Witt, S.C., Lundin, R.E. and Spencer, R.R. "Isolation of 4'methylcournesterol from Alfalfa". J. Agr. Food Chem., 12 No. 6 (1965), 597 - 9.
- [162] Zilg, H. and Grisebach, H. "Biosynthesis of Flavonoids XXXV. Cournestanes in Cicer species". Phytochemistry, , 8, No.11(1969), 2261 - 2263.
- [163] Rao, P.P. and Srimannarayana, G. "Tephrol, a New Coursestone from the Roots of *Tephrosia villosa*." *Phytochemistry*, 19 (1980), 1272 1273.
- [164] Rao, E.V. and Murthy, M.S. Fitoterapia, 56 (1985), 362.
- [165] Woodward, M.D. "Phaseollin Fromation and Metabolism in Phaseolus vulgaris". Phytochemistry, 19 (1980), 921-27
- [166] Filho, R.B., Gottlieb, O.R., Mourao, A.P., Da Rocha, A.I. and Olieveira, F.S. "Flavonoids from Derris Species". Phytochemistry, 14(1975), 1454 - 1456.
- [167] Goda, Y., Katayama, M., Ichikawa, K., Shibuya, M., Kiuchi, F. and Sankawa, U. "Inhibitors of Prostoglandin Biosynthesis from *Dalbergia odorifera*". Chem. Pharm. Bull., 33 (1985), 5606-5609.
- [168] Duddeck, H., Yenesew, A. and Dagne, E. "Isoflavonoids from *Taverniera abyssinica*". Bull. Chem. Soc. Etiop. 1 (1987), 36-41.
- [169] Stadler, M., Dagne, E. and Anke, H. "Nematicidal Activities of Two Phytoalexins from Taverniera abyssinica". Planta Medica, 60 (1994), 550-552.
- [170] Maximo, P. and Lourenco, A. "A Peterocarpan from Ulex parviflorus". Phytochemistry, 48, No.2(1998), 359-362.
- [171] Ingham, J. L. "Isolation and Identification of Ciser Isoflavonoids." Biochemical Systematics and Ecology, 9, Nos.2-3 (1981), 125-128.
- [172] Babu,U.V., Bhandan, S.P.S. and Garg H.S. "Barbacarpan, A Pterocarpan from Crotalaria barbata, Phytochemistry, 48, No.8(1998), 1457-1459.
- [173] Iinuma, M., Ohyama M. and Tanaka, T. "Flavonoids in Roots of Sophora prostrata". Phytochemistry, 38, No. 2(1995), 539-543.
- [174] Ingham, J. L. "Isoflavonoids Phytoalexins of Yam Bean(Pachyrrhizus crosus)". Z. Naturforsch,

34C (1979), 683-691.

- [175] Ingham, J.L. "Systematic Aspects of Phytoalexins Formation within Tribe Phaseoleae of the Leguminosae." *Biochemical Systematics and Ecology*, 18, No.5(1990), 329-343.
- [176] Yenesew A., Midiwo J.O., Miessner M., Heydenreich, M. and Peter, M.G. "Two Prenylated Flavanones from Stem Bark of *Erythrina burttii*". *Phytochemistry*, 48, No.8 (1998), 1439-1443.
- [177] Nkengfack A.E., Vouffo T.W., Vardamides J.C., Kouam J., Fomum, Z.T., Meyer, M. and Sterner, O. "Phenolic Metabolites from *Erythrina* Species". *Phytochemistry*, 46, No.3 (1997), 573-578.
- [178] Tanaka, H., Tanaka, T. and Etoh, H. "Three Pterocarpanoids from Erythrina crista-galli". Phytochemistry, 45, No. 4 (1997), 835-838.
- [179] Tanaka, H., Tanaka, T. and Etoh, H. "A Pterocarpan from *Erythrina orientalis*." *Phytochemistry*, 45, No. 1 (1997) 205-206.
- [180] Tanaka, H., Tanaka, T. and Etoh, H. "A Pterocarpan from *Erythrina orientalis*". *Phytochemistry*, 42, No. 5 (1996),1473-1475.
- [181] Tanaka, H., Tanaka, T. and Etoh, H. "Two Pterocarpans from Erythrina orientalis". Phytochemistry, 47, No. 3 (1998), 475-477.
- [182] Kardon, L.B.S., Tsauri, S., Padmawinata, K., Pezzuto, J.M. and Kinghorn, A.D. "Cytotoxic Constituents of the Seeds of *Pachyrrhizus erosus*". *Planta Medica*, 56 (1990), 673 674.
- [183] Stevenson, P.C. and Veitch, N.C. "The Distribution of Isoflavonoids in *Cicer*". *Phytochemistry*, 48, No. 5 (1998), 995-1001.
- [184] Herath, H.M.T.B., Dassanyake, R.S., Priyadarshany, A.M.A., De Silva, S., Wannigama, G.P. and Jamie, J. "Isoflavonoids and A Pterocarpan from *Gliricidia sepium*". *Phytochemistry*, 47, No.1 (1998), 117-119.
- [185] Barrero, A.F., Cabrera, E., Rodriguez, I. and Fernandez, E.M. "Resorcinol Derivatives and Other Components from *Ononis viscosa*". *Phytochemistry*, 36, No. 1(1994), 189-194.
- [186] Kurosawa, K., Ollis, W.D., Sutherland, I.O. and Gottlieb, O.R. "Variabilin, 6a-hydroxypterocarpan from *Dalbergia variabilis*". *Phytochemistry*, 17 (1978), 1417 1418.
- [187] Barrero, A.F., Cabrera, E. and Garcia, I.R. "Pterocarpans from Ononis viscosa". Phytochemistry, 48, No. 1 (1998), 187-190.

حسن بن محمد الحازمي و حمد زيد الخثلان جامعة الملك سعود، كلية العلوم، قسم الكيمياء ص.ب ٢٤٥٥، الرياض ١٥٤١١، المملكة العربية السعودية (قدم للنشر في ١٤٢٠/٦/٤هــ، وقبل للنشر في ١٤٢٠/١١/٥هــ)

ملخص البحث. تم في هذا المقال حصر لجميع البتروكاربان والكومستان التي سبق فصلها من نباتات مختلفة للعائلة البقلية. وبالإضافة إلى ذلك فقد تمت الإشارة إلى كل من فعالية هذه المركبات الطبيعية ضد الميكروبات وكذلـــــك مسار الاصطناع الحيوي لها.