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Abstrac!. We study in this paper the effect of substituting a very little studied queueing system, the MIGlr, 
by a very well studied one. the quorum system, when such substitution is feasible. We show that it results in 
higher mean system size and mean queue size, but in lower total expected cost per unit of time. 

Introduction 

It is well known that the multichannel queue MlG!r with ordinary Poisson input and 
general service time permits no simple analytical solution; see for example Gross and 
Harris [1, p. 308]. What if, instead ofrparallel servers performing the same task, we 
place a single server who processes customers in batches of size r. For example, instead 
of having ten taxicabs drive ten people from a certain location X to another location Y, it 
may be possible to have a bus drive the ten people altogether from X to Y. Intuitively, 
this would increase the waiting time of the customers, but is this always true? Intuitively 
also, this would incur lower costs to the system manager, but again, is this always true? 
The aim of this study is to compare the performance and the costs incurred by a 
multichannel queueing system and those of a bulk service queueing system, to help 
system manager decide whether the trade is worthwhile. 

We anticipate applications of this study in transportation systems where we may be 
better off using a bulk service rather than a multichannel system. Applications to 
inventory control also seem possible since one may order in bulk or singly. 

Queues in which customers are served in bulk are usually called bulk service 
queueing systems. Bulk service queueing systems were introduced by Bailey [2]. Then, 
they were studied by Downton [3,4], Fabens [5] and Takacs [6]. Feller [7, p. 196] 
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reports a paper by Boudreau et al. [8] describing queues for a shuttle train as follows: A 
shuttle train with r places for passengers leaves a station every hour on the hour. 
Prospective passengers appear at the station and wait in line. At each departure the first r 
passengers in line board the train, and the others remain in the waiting line. 

Bulk service queueing systems are also called quorum systems; see Chaudhry and 
Templeton [9]. Quorum systems under various disciplines have been extensively studied 
in recent years, and tractable solutions are available. A useful bibliography on quorum 
systems is contained in Dshalalow [10, pp. 61-116]. The idea now is to replace a 
multichannel queue M/Glr by a quorum system M/G'/!. Of course, the nature of the 
multichannel queueing system may not allow such change, but when this is feasible, is it 
worth making such a change? 

The rest of the paper is organized as follows. Section 2 describes the queueing 
models MlG'/I and MlG/r and summarizes relevant results. The computational 
comparison of the systems is carried out in Section 3. The paper is summarized and 
conclusions are presented in Section 4. 

Previous Results 

The MlG'/i queueing system 
In this model, the arrival process of customers to a single-channel facility is a 

Poisson process with rate A. There is no waiting capacity constraint. The server 
processes customers in batches of a fixed size r except when less than r are in the queue, 
in which case the server remains idle until the line size reaches r. The service time of a 
batch of customers has a general probability distribution function BCt) with finite first 
mean 1-1-1 and second moment b2 - The Laplace-Stieltjes transform of BCt) is denoted 

BO(8)andisdefmedby B"(B) = r e-9 'dB(t)_ 

The following results may be derived as a special case from the results of 
Dshalalow and Tadj [11]. The embedded process Q(T.), where QCt) denotes the number 
in the system at an arbitrary instant of time t and TI , T2, T3, ••• are the successive times of 
service completion, is an ergodic Markov chain, provided the traffic intensity p=All-lr is 

smaller than L Let pt = limn-.oo P{Qn = i} denote the steady-state system-size 

probability at a service completion. Also, let P+ (z) = Li20 pt Zi. Then 

BOCA-h)'" (zr -zi)pt 
p+ Cz) = L..'<f 

r ° ' z -B (A-AZ) 
(1) 

d + + + I an Po , PI ",', P r-I are determined by solving the fo lowing system of linear 
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equations: 

LPt d
k

k 
[A(z) - Zi 1 = D;s = 1, ... ,S;k = D, ... ,ks -1, 

. dz 
1<r z=:ozs 

(2) 

LPt(r-i)=r-pr, 
i<r (3) 

where z,; s=l, ... , S, are the roots of the characteristic equation Z-B'(A-'Az)=D that belong 

to the closed unit ball B (D,I) in Cwith their multiplicities k, such that L~~lks = r -/ . 

Another expression is derived by Chaudhry and Templeton [9, p. 191] for P'(z) 

IT (z-z·)/(I-z·) 
p+ (z) = r(l- )(z -I)B'(A - 'Az) i<r I I 

P zr -B'(A-Az) , (4) 

where z" Z2, ... , Z,.\ are the r-l roots in z of the characteristic equation inside the unit 
circle Izl= 1. 

Now, let Pi = limt->ro P{ Q(t) = i} denote the steady-state system-size probability 

at an arbitrary instant oftime. Also, let P( z) = Lt?OPiZi . Then 

that is, 

1
1 "i + j - L.j-oPj z _ r -

Pi - I. . 
I + J 

-;- Lj=i-r+l P j Z 

(5) 

i < f, 

i :2: r. 
(6) 

Our intention is to build a cost model in order to compare the M/G'/! and M/Glr 
queueing systems. Before developing the cost structure, we need to derive some 
measures of performance of the system. 

The mean system size at a departure epoch can be obtained by taking the fIrst derivative 
of the probability generating function P(z), derived in (1), with respect to z and setting 
z= 1. We obtain after considerable algebra 
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where 

and 
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J ,,·2 + 
T = L.,! Pi . 

i<r 

(7) 

(8) 

(9) 

The mean queue size at a departure epoch can be derived using expression (7) and the 
relation 

(10) 

The mean system size at an arbitrary instant of time can be obtained by taking the first 
derivative of the probability generating function p(z), derived in (5), with respect to z and 
setting z= I. We get 

+ I L = L + -(r -1). 
2 

(11) 

The mean queue size at an arbitrary instant of time can be derived using expression (11) 
and the relation 

Lq =L-pr. (12) 

We also need to derive the mean idle and busy periods, and the mean cycle length. 
A busy period is defmed to begin with the arrival of a customer to the servicing facility 
with r-l customers waiting in the queue and to end when the queue size next drops below 
level r at a service completion. A cycle is the sum of a busy period and an adjacent idle 
period. 

The mean idle period is given by 

(13) 

The mean busy period is given by 
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I-K -
B= I I (14) K· ' 

I 

where 

K j =LPi' (15) 
i<r 

An equivalent but simpler expression is found in Chaudhry and Templeton [9, p. 324] 

The mean cycle length is given by 

- I pr 
B=--. 

A. Mr 

- I r 
C=--. 

A. Mr 

(16) 

(17) 

It is interesting to note that the probability that the service station is idle is equal to the 
traffic intensity 

B 
=--=-=p, (18) 
B+I 

a result obtained by Heyman [12] for the MlG/1 queueing system. 

We, now, are ready to defme the system's expected total cost per unit of time. 
We use the same cost structure that has been widely used in the literature for the control 
of queues. Let 

• c, : start-up cost per cycle, incurred each time the server is turned on. 
• c, : holding cost per unit time, incurred for each customer in the system. 
• Co : operating cost per unit time, incurred for operating the service station. 
• ea : cost per unit time, incurred for performing an auxiliary task by the service 

station. 

Then the total expected cost per unit time is given by 
- -
B I I 

TC = chL+c o =+ca =+c, =. 
C C C 

Taking expressions (13), (16), and (17) into account, relation (19) reduces to 

A.M r TC = chL+ cuP+ c a (1- p)+ c, --. 
r 

(19) 

(20) 
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The MlGlr queueing system 

In this model, the arrival process of customers to a multichannel facility is a 
Poisson process with rate A. There is no waiting capacity constraint. The service time S 
of a customer has a general probability distnbution function B(t) with finite fIrst mean 1-1". It 
is assumed that the traffic intensity p=IW is smaller than one. 

As mentioned in the introduction, obtaining the stationary probability generating 
function for the distribution of the queue size is not possible generally for MlGlr. Tijms 
[13, pp.293-294] obtains useful approximations using a regenerative approach. He first 
makes an approximation assumption with regard to the behavior of the process at the 
service completion epochs. 

Approximation assumption 

(a) If at a service completion epoch k customers are left behind in the system with 
I ~ k < r, then the time until the next service completion epoch is distributed as 

min( Sf , ... ,S: ), where Sf , ... ,S: are independent random variables having each 

the residual life distribution function 

I t 
Be(t) =- f[l- B(x)]dx;t ~ 0, 

E(S) 0 

as probability distribution function. 

(b) If at a service completion epoch k customers are left behind in the system with 
k 2': r, then the time until the next service completion epoch is distributed as Sir, 
where S denotes the original service time of a customer. 

Theorem 

Under the Approximation Assumption, 

app_(rp)j app"-Ol I 
Pj --'-I-Po ,j- " ... ,r- , 

J. 
(21) 

j 
app_, app '''b app.·_ 1 

Pj -"aj-rPr_l +"L.. j-kPk ,J-r,r+ , ... (22) 
k=T 

where the constants an and bn are given by 
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"'J -At (A.t)n b n = [1- B(rt)]e --dt; n = 0,1, ... 
o n! 

As for the previous model, we derive some measures of performance in order to 
write the system's total expected cost per unit of time explicitly. 

The mean queue size is given by 

L':F = [(1- P)Yl _r_ + 2.(1 +C~)]Lq (exp),' 
E(S) 2 

'" 
Yl = J[l-Be(t)l'dt. 

o 

The quantity L,i exp) denotes the average queue size in the MIMIr queue. 

The mean system size can be derived from expression (23) using the relation 

Lapp = L4'P + pr. 

(23) 

(24) 

We again need to derive the mean idle period, the mean busy period, and the mean 
cycle length. Gross and Harris [1] defme an i-channel busy period for the multichannel 
queue MlMlr (O::;i::;r) to begin with an arrival to the system at an instant where there are 
i-I in the system to the very next point in time when the system size dips to i-I. The 
case where i= 1 (an arrival to an empty system) defines the system busy period. 

Since the arrival process is Poisson, the mean system idle period is given by 

- 1 
1=-. 

A. 
(25) 

The mean system busy period is derived by writing the ratio of the percentage of time the 
server is busy to the percentage of time he is idle: 

B I-po 
= 

I Po 
(26) 
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which yields 

1- Po-
B= I. 

Po 

The mean system cycle length is therefore 

- 1-
C=-I. 

Po 

(27) 

(28) 

Employing the same cost structure as for the previous model, the system's total 
expected cost per unit of time is given by 

(29) 

Computational Study 

We carry out the computational study by assuming that the service times are 
exponentially distributed, that is, B(t) = I-e'''', t <: O. The Laplace-Stieltjes transform of 
the service time distribution is given by B'(9) = J.l/(J.l+9) . 

The M/M'/l queueing system 

To compute the steady-state system-size probabilities at a service completion 
+ + + • Po ,PI , .. ·,P,_I' we first solve the characteristic equation z'-B (A-h)=O, which 

reduces, in this case, to: 

r r-I 1 0 prz -z - ... -z- = . (30) 

It is well known that equation (30) has r-l simple roots inside the closed unit ball. They 
are denoted z" s=I, ... , r-l. Next, we solve the system ofr linear equations (2) and (3). 
Finally, the steady-state system-size probabilities at an arbitrary instant of time Po, ... , P~l 
are computed using relations (6). The various measures of performance and the total 
expected cost per unit of time derived in Section 2 are computed using their respective 
relations. 

The M/Mlr queueing system 

The approximations given in the previous section become exact when the service 
time is assumed to be exponentially distributed. The well known results of the MIMIr 



Comparative Study of MIG'1l and M/G/r Queueing Systems 

~eue may be used. We get, see e.g., Gross and Harris [I]: 

Pj= 

The mean queue length is given by 

The mean system size is given by 

The mean idle period is given by 

The mean busy period is given by 

- 1 
1=-. 

A 

l:S::i<r, 

i ~r. 

B = I-po I. 

The mean cycle length is given by 

Po 

- 1-
C=-I. 

Po 

Computational Comparison 
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(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Most computations were done using version 5 of the Matlab mathematical package 
on a PC running at 90 Mhz. They took only fractions of a second to complete. Three 
different values of the traffic intensity were chosen: p=O.1 (light traffic), p=0.5 (average 
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traffic), p=0.9 (heavy traffic). In all three cases, the steady-state system-size 
probabilities were computed. To compute Land Lq. we set ;Fb2=2(pr)', since the second 
momerifof an exponential distribution is given by b,=2/'/. 

Figures representing the variations of the mean system size, the mean queue 
size, the mean idle period, the mean busy period, the mean cycle length, the system 
"turned-off' probability, and the total expected cost per unit of time, as a function of r 
were drawn for all three values of the traffic intensity. For brevity, only the graphs 
representing the costs are exhibited and only a few words will be said about the others. 

As expected, for for all three kinds of traffic, the quorum mean system size is much 
higher than the multichannel mean system size, and the difference gets higher and higher 
as r increases. 

The same conclusions can be made for the mean queue size as in the case of the 
mean system size in all three kinds of traffic. This agrees with our prediction that the 
mean waiting time of a customer is much higher in the quorum system than in the 
multichannel. 

The graphs representing the mean idle period, the mean busy period, and the mean 
cycle length presented no surprise. The quorum mean idle period was always larger than 
the multichannel mean idle period, the quorum mean busy period was always smaller 
than the multichannel mean busy period; and the quorum mean cycle length was larger 
than the multichannel mean cycle length for p=O.I, and smaller for p=0.5 andp=0.9. 

The quorum system is turned off when the server is idle and the probability of this 
to happen is just L.i<rPi' The multichannel system is turned off when all severs are 

idle, that is with probability Po' In all three kinds of traffic, the quorum "system turned­
off" probability gets higher and higher than the multichannel "system turned-oft" 
probability as r increases. 

Finally, we came to compute the total expected cost per unit time, relation (20) for 
the quorum system, and (29) for the multichannel system. We set 1..=1 to compute the 
mean idle and busy periods, and the mean cycle length. We also chose the following 
unit costs: ch=IO, ca=O.I, c,,=O.l, and c,=IOOO. Figure I represents the variations of the 
total expected cost per unit time for both systems, as a function of r. As expected, in all 
three kinds of traffic: light (Fig. la), average (Fig. Ib), and heavy (Fig. Ie), the quorum 
cost is lower than the multichannel cost. In other words, the system manager is better off 
using a bulk service model instead of a multichannel model, if feasible. Of course, other 
values of the parameters may bring completely different results. A sensitivity analysis on 
the unit costs may reveal how sensitive our results are? We do not conduct such analysis 
since our computations are merely for illustrative purposes. Note that the fixed unit costs 
Ch, Co, C," and c, need not be the same for both systems since starting up a bulk system, 
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for example, may be more costly than starting up a multichannel one. 
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Fig. 1a. Tota! cost comparison (p=O.l). 
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Fig. 1 b. Total cost comparison (p=O.5). 
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Fig. Ie. Total cost comparison (p='0.9). 

Conclusion 

In this paper, we study the effect of substituting a very little studied queueing 
system, the M/G/r, by a very well studied one, the quorum system. This substitution is 
not always feasible, depending on the nature of the queueing system on hand, but when it is, it 
may result in lower total expected cost per unit of time. Given fixed values for the 
system parameters and given a distribution function for the service time (which may not 
be exponential, but the analysis would be conducted along the same lines), a system 
analyst may help a decision maker decide whether a substitution renders the system more 
efficient. 

Note that all the graphs representing the total expected cost per unit of time are 
convex. It may be worth investigating whether this is always true. This suggests that one 
may [md a "best" r for which the total cost is minimum. One such r would satisfY 
TC(r)sTC(r+l). 
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