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Abstract. The vibrational energy states of the center-of-mass motion for an atom trapped by the optical dipole 
potential due to a cavity mode are calculated. In particular, a sodium atom between two conducting plates is 
considered with its dipole moment vector orientated parallel to the plates. The negative detuning situation and 
appropriate parameters are chosen in order to maintain a sufficient depth for the central well. Variations of the 
vibrational states with the mode intensity, longitudinal velocity, and plates separation are examined and 
discussed. 
 

1. Introduction 
 
It is well known that, in the absence of any external influence, an atom interacts with the 
vacuum electromagnetic fields that are constrained by the cavity in which an atom is 
placed leading to two types of physical effects [1-4]. First, the decay emission rate of the 
atom is modified, becoming position-dependent. Second, the atom experiences energy 
shifts to both levels [3-5].  
 

On the other hand, in the presence of any excitation cavity modes, the state of the 
motion of the atom can be altered. With one of the modes excited with sufficient 
intensity, the atom experiences radiation pressure force, which is exploited in cooling (or 
heating) atomic motion [6-7]. The atom also experiences a dipole force (gradient of 
optical dipole potential), which causes trapping of the atom [7-8].  In this paper we 
evaluate the vibrational energy states of a trapped atom in optical dipole potential due to 
a cavity mode by using harmonic oscillator approximation. Such a study is useful in 
understanding the nature of the quantized motion of the trapped atom in a micro-cavity, 
in general [5].  

 
This paper is organized as follows: in section 2, the outlines of the procedure 
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leading to the evaluation of the optical trapping potential in a cavity when a specific 
cavity mode is excited are given. In section 3, we describe our basic model and modify 
all relations in accordance with it. In section 4, we show the properties of atomic motion 
in the context of atom-guides. In section 5, we estimate the vibrational frequency of the 
trapped atom by using the harmonic oscillator approximation, and then discuss the 
effects of the mode intensity, longitudinal velocity, and plates separation on the 
vibrational frequency. Finally, the summary and conclusions are given in Section 6.  
 

2. Trapping Potential in a Cavity 
 

In the presence of any excitation cavity modes, the atom becomes subject to a light-
induced force derivable from the dipole potential associated with the cavity mode. The 
steady state dipole force (the gradient of the potential) acting on the center of the mass of 
the atom can be written as [9]:    
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In the above equation ),( VRS  is the saturation parameter defined by:  
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where ( )Γ R  is a position-dependent decay rate for an electric dipole moment d  situated 
at an arbitrary point (x, y, z)=R  within a cavity, and ( )Ω R  is the Rabi frequency for 
an electric dipole d  in the cavity mode, while ),( VR∆  is a dynamic detuning 
parameter, defined for the two-plate case by:    
 

|| 0 || || 0 || ||( , ) (k , n) k V k V∆ = ω −ω − = ∆ −R V                       (3) 
 
where ||k  and ||V  are the magnitude of the wave vector and the velocity in the parallel 
direction of the cavity respectively.  
 

On the other hand, the dipole force .dipF  can directly be written as the gradient of a 

dipole potential dip.U  as follows  [9]: 

dip. dip.F ( , ) U ( , )= −∇R V R V                                  (4) 

Hence the dipole potential .dipU  can be written as:  

dip.
( , )U ( , ) ln (1 S( , )
2

 ∆ = +  
  

R VR V R V                         (5) 

It is very clear that the ability of such potential to trap the atoms within the 
central region of the cavity depends on many factors, such as the cavity shape, the dipole 
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orientation, the type of detuning and the type of excited cavity mode [4]. 
 

3. Physical Model 
 

The basic model considered here consists of a sample of a single atom which is 
trapped in the optical dipole potential due to an excitation of a cavity mode in vacuum 
between two conducting plates separated by a distance L .  

The trapping potential of such model can be modified essentially when a cavity 
mode is excited at a frequency ),( nk||ω , which is closely tuned to the dipole transition 

frequency 0ω . By setting ( , z)||=R r  with (x, y)|| =r , we can write the optical dipole 

potential dip.U  which traps the atom between the conducting plates in a static case (i.e. 

||V 0= ) as: 

( ) 0
dip.

(k , n)
U k ,n, z ln 1 S(k ,n, z)
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                         (6) 

where the saturation parameter ),,( znkS ||  for this case is given as:   
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where n  refers to the order of the excited mode and 0||0 ),( ωω −=∆ nk  is the static 
detuning of the cavity mode from the atomic resonance, and it is clear that the potential 
provides a minimum at the high intensity locations for red detuning while it provides a 
maximum at the high intensity locations for blue detuning. 

In this paper we have chosen to work with sodium atom Na  for many reasons: 
it is easy to produce a thermal sodium atomic beam, and sodium has an ideal level 
structure. Also, we can drive the cooling transition by a continuous wave dye laser 
employing one of the most efficient and reliable dyes, Rhodamine 6G [7]. In addition we 
have taken the decay rate (z)Γ , Rabi frequency ),,( znk||Ω  and thus the optical dipole 

potential ( )dip.U k ,n, z||  for an atom trapped between two conducting plates for a 

specific case. With the dipole of the atom orientated parallel to the plates, and with red 
detuning 00 <∆ , the parameters are chosen in order to maintain an enough central well 
depth. We have taken this specific case because the main objective of this work is to 
describe the quantum behavior for a confined atom. Therefore, Eq.(5) should be 
rewritten as : 
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where (z)||Γ is given by [1]: 
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and 0Γ  is the corresponding spontaneous decay rate in free space, is given by: 
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Beside n = 1, )(z||Ω  is given by [4]: 

0
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where 0Ω is the free space Rabi frequency, which is given as: 
1/ 22
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There are in fact two distinct theoretical limits of the trapping forces, depending on 
the saturation parameter. Firstly, the low intensity limit, when S 1<< . Secondly, the 
high intensity limit, when S 1>> . In the latter case we need to use the dressed atom 
approach [10], while in the first case we can use the above equations as basis of the 
dynamic motion. Here we consider the limit of large detuning in which 0∆  is assumed 

to be much greater than the peak Rabi frequency Ω  and greater than the atomic recoil 
frequency ( 2 5 1

recv k / 2M 1.58 10 s−= = × ).  
 
Fig. 1 shows the variation of the optical dipole potential ( )dip.U k ,n, z||  between 

the two plates corresponding to the parameters given in Table 1. Consequently, the red 
detuned atom provides a quasi-harmonic potential that traps the atom in the region of the 
minimum of ( )dip.U k ,n, z||  which occurs at minz L / 2= . 
 

4. Atomic Motion 
 

In the context of cooling or trapping atoms, we have to distinguish between two 
atomic motions; firstly, the longitudinal motion due to the spontaneous forces, which 
may be slowed down to cool the atom; secondly, the transverse motion due to the optical 
potential, which leads to trap the atoms. The first motion can be treated classically 
because its velocity is very large (about 10 km / s ) [4,11-12], while the second motion 
has a very low velocity. The maximum transverse velocity corresponding to the central 
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potential depth can be given as [13]: 
 

[ ]1/ 2
max minV 2U / M=                        (13) 

 
where M  is the mass of the atom. From Fig. 1, we can directly obtain maxV  which is 

about 2m / s . This means that the momentum of the photon ( 27
pP k 1 13 10 N s−= = ⋅ × ⋅ ) 

is comparable to the momentum of the atom ( 26
a maxP MV 7.682 10 N s−= = × ⋅ ), or, in 

other words, the de Broglie atomic wavelength ( 9
dB maxh / MV 8 67 10 m−λ = = ⋅ × ) is 

comparable to the radiation wavelength ( m9100.589 −×=λ ). Consequently, we have 
to consider the limit in which the atom obeys quantum-mechanical laws. Also, the atoms 
move in the quantum regime since the separation between the plates is nmL 500= . 
 
Table 1. The parameters corresponding to Fig.1 

Unit Value Symbol 
0BParameters 

m  9589 10−×  λ  1BWavelength of a resonant beam 

1s−  153 2 10⋅ ×  0ω  Transition frequency 

m  9500 10−×  L  Plates separation 

kg  263 82 10−⋅ ×  M  Atomic mass 

1s−  661 3 10⋅ ×  0Γ  Free space decay rate 

1s−  89.8 10×  0Ω  Free space Rabi frequency 

Hz  937 10−− ×  0∆  2BStatic detuning 

1ms−  41.0 10×  0V  3BScaling velocity 

2Wm−  71 0 10⋅ ×  0I  4BScaling intensity 

J  273 2 10−⋅ ×  0U  5BScaling potential 

 
It can also be seen from Fig.1 that the central well depth is approximately 023U  

(where 27
0 0U / 2 3.23 10 J)−= Γ = × . This is deep enough to permit many quasi-

harmonics trapping (vibrational) states. The vibrational frequency of trapped atoms can 
be estimated simply by using the harmonic oscillator approximation [8,14].  
 

5. Harmonic Oscillator Approximation 
 

We have shown that there is an adequate dipole potential depth (where the highest 
of vibrational frequency of trapped atoms is about 0v 23U / h 112MHz= ≈ ), which 
allows many quasi-harmonic trapping (vibrational) states to exist. We approximate the 
dipole potential in Fig.1 by the harmonic oscillator approximation (the parabolic 
approximation) about the dipole potential minimum for mode n  as [14]: 
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( ) ( )22
min. n min

1U k ,n, Z U M z z ............
2|| ≈ + ω − +                        (14) 

 
where nω  is the vibrational frequency of the atom in the dipole potential and the sub-
number refers to the order of the excited mode. The quantity nMω  is the stifness 
constant and min .U  is the potential minimum which is given by:  
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                  (15) 

The harmonic oscillator approximation and the parameters assumed above will give a 
central well depth approximately like Fig.1. It is shown clearly by a dotted line in Fig.2. 
The harmonic vibrational frequency nω  can be estimated simply by using the harmonic 
oscillator approximation as follows: 

min

1
2 2dip

n 2
z

d U2
M dz

  ω =  
  

                                      (16) 

We have explicitly: 

 
Fig. 1. The dipole potential of the sodium atom between conducting plates when the dipole is parallel to 
the plates. See Table.1 for values of parameters. 
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                       (17) 

While the corresponding harmonic oscillator ground state width is obtained by:  
 

( )1/ 2
nz / Mδ = ω                         (18) 

 

The harmonic oscillator approximation is valid if minz zδ << so that the atomic 
wave function is well localized around the potential minimum.  

 

It is not difficult to check that for the parameter values for sodium, and the n 1=  p-
polarized mode in the cavity between the conducting plates, the vibrational frequency 
and hence the vibrational energy can be estimated as: 

 
7 1

1 2 10 s−ω ≈ ×  & 27
1E 2 10 J−≈ ×                        (19) 

 
 

Fig. 2. The dipole potential of the sodium atom between conducting plates when the dipole is parallel to 
the plates for negative detuning showing the potential minimum at the center. The dotted line 
shows the parabolic approximation to the dipole potential. See Table.1 for values of parameters. 
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It is important now to examine how the vibrational frequency 1ω  varies with changing 
of the mean factors of the model: mode intensity, longitudinal velocity and plates 
separation. Fig.3 displays the variations in the vibrational frequency 1ω  (in units of 0Γ ) 
with the mode intensity, assuming different values of the longitudinal velocity. It can be 
seen that the value of vibrational frequency decreases with the increasing velocity, 
because the depth of the well decreases with increasing velocity [4]. Fig. 4 shows the 
variations in the vibrational frequency with longitudinal velocity taking different values 
of the mode intensity. We note that the value of the vibrational frequency increases with 
increasing intensity because the depth of the well increases with increasing intensity [4]. 
In Fig. 5, we show the variations in the vibrational frequency with plates separation; it is 
worth noting that the value of the vibrational frequency decreases with increasing plates 
separation because, it is well-known in the context of the Cavity-QED, the dipole well 
becomes shallow with increasing the cavity dimension.  
 
 
 

 
 

 
 

 
Fig. 4. Variation of the vibrational frequency with the parallel velocity of a sodium atom between the 

plates when the n=1 p-polarized cavity mode is excited. Here the electric dipole matrix element 
is oriented parallel to the plate. The labels 1-3 stand for 7 2I 0.25, 0.5 and 1 10 Wm .−= ×  

 

 
 

Fig. 5. Variation of the vibrational frequency with the cavity width for a sodium atom between the plates 
when the n=1 p-polarized cavity mode is excited. Here the electric dipole matrix element is 
oriented parallel to the plate and the excitation intensity and the parallel velocity are constant 

( )7 2 4I 1 10 Wm and V 1 10 m / s−= × = × . 

 
 

Fig. 3. Variation of the vibrational frequency with the excitation intensity of the n=1 p-polarized cavity 
mode for a sodium atom between the plates. Here, the electric dipole matrix element is oriented 
parallel to the plate. The labels 1-3 stand for s.4V = 0.25, 0.5 and 1×10 m/  
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6. Comments and Conclusions 
 

In conclusion, we have investigated in detail the motion of an atom trapped in 
spatially varying electromagnetic fields between conducting plates. Firstly, we evaluate 
the optical dipole potential that acts on the atom confining within the central region with 
negative detuning. Appropriate parameters were chosen in order to maintain a sufficient 
central well depth. 

  
We have also studied the transverse atomic motion of the atom in the trapping 

potential and described it in terms of vibrational states. In addition, we have evaluated 
the vibrational states of a trapped atom between conducting plates and have shown that a 
sufficient depth for the potential is needed to allow several quasi-harmonic trapping 
states. The vibrational frequency of the trapped atoms was estimated by using the 
harmonic oscillator approximation. The effect of the mode intensity, longitudinal 
velocity and plates separation on the vibrational frequency was also discussed. 

  
In fact, from a quantum-mechanical point of view, the precise details of the 

vibrational energy levels can be obtained straightforwardly by the numerical solution of 
the one-dimensional Schrodinger equation involving the potential. However, the details 
along this line have not yet been reported. They are currently under investigation and the 
results will be reported in due course. 
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 مستويات الطاقة الاهتزازية لذرة مأسورة بين طبقين موصلين 
 

 سعود العوفي
 فرع جامعة الملك عبد العزيز،كلية العلوم،أستاذ مساعد بقسم الفيزياء 

 المملكة العربية السعودية ،المنورة بالمدينة 
 )هـ٧/٩/١٤٢٤هـ؛ وقبل للنشر في ٢٢/٢/١٤٢٣قدم للنشر في (

 
 

رة أسيرة لقد تم حساب مستويات الطاقة الاهتزازية لحركة  مركز الكتلة لذّ . ملخص البحث
وعلى وجه .  ء عن نمط اهتزازي داخل تجويفىالقطب ناش ثنائيبواسطة جهد ضوئي 

ن إبحيث ) صفيحتين(معالجة ذرة صوديوم مأسورة بين طبقين موصلين  الخصوص فقد تمت
و تم اختيار حالة توليف سالبة     .متجه عزم ثنائي القطب لها يكون موازيا لسطح الصفيحتين

ومتغيرات أخرى مناسبة للحصول على عمق كاف للبئر الذي  يمثل الجهد من أجل الحفاظ على 
رة مع كل من شدة غيرات على مستويات الطاقة الاهتزازية للذّ كما تمت دراسة الت. رةأسر الذّ 

 .   السرعة الطولية والمسافة بين الصفيحتين، نمط الاهتزاز 
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