J. King Saud Univ., Vol. 2, Agric. Sci. (2), pp. 195-202 (1410/1990)

Iron Nutrition of Soybean Plants in Relation to Nitrogen Form

Z.T. Sliman

Plant Production Department, Faculty of Agriculture, King Saud University, Riyadh, Saudi Arabia

Abstract. Fe-efficient Hawkeye and Fe-inefficient PI-54619-5-1 soybean plants were grown in perlite culture to study the effect of nitrogen form $(NO_3^-, NH_4^+ \text{ or } N_2\text{-}atm.)$ on the growth response and iron uptake and translocation. Both genotypes showed the same response to N form. NH_4^- fed plants did not grow well and exhibited chlorosis, restricted growth and necrotic spots throughout the leaves. The magnitude of plant growth was in the order of $NO_3 > NH_4$.

Ammonium treatment resulted in greater plant iron content but the total uptake was reduced. This reduction was due mainly to the reduction of dry matter as a result of NH_4 toxicity. The limitation of NH_4 as a sole N form is discussed on the basis of its effect on the pH of the growing media and/or its toxicity per se.

Introduction

Legumes growing under conditions of a minimal ionic N supply, clearly have some metabolic processes substantially different from those of other legumes and non-legumes receiving much of their N via entry of NO_3^- and/or NH_4^+ into the root cells. First, effectively nodulated plants have a sequence of N assimilation and transport functions which differ in kind and location from non-nodulated plants. Secondly, a low NO_3^- or NH_4^+ supply in the soil implies a much decreased influence of any moderating (antagonistic or sinergistic) effect of these ions on the uptake and translocation of other essential elements [1].

Uptake and assimilation of the ionic N forms results in substantial cytoplasmic generation of H ions and their secretion to the ambient solution, depending on weather the dominant form is NH_4^+ or NO_3^- [2, 3]. In addition, excess cation uptake causes substantial rhizosphere acidity generation [2].

Z.T. Sliman

Brown *et al.* [4] and Landsberg [5] showed that Fe-deficiency can result in increased acidification of the nutrient solution. This acidity may influence the availability of P, Fe, Al and probably other trace metals present in the growing media.

The objective of the present study was to examine the effects of different forms of nitrogen $(NO_3^-, NH_4^+ \text{ or } N_2)$ on the growth and iron uptake and translocation of soybean plants.

Materials and Methods

Plant culture

Soybean seeds (Glycine max (L.) Merr.) of the Fe-efficient Hawkeye (HA) and the Fe-inefficient PI-54619-5-1 (PI) genotypes [6] were obtained from the U.S. Regional Soybean Laboratory, Urbana, Ill. The seeds were surface sterilized prior to planting by soaking into 75% (v/v) ethanol for three minutes followed by extensive rinsing with deionized water. The seeds were then inoculated with a commercial source (Agway, Inc. Syracuse, N.Y.) of Rhizobium japonicum and then planted in perlite in 20.5 cm diameter pots. One week after germination, seedlings were thinned to three per pot. All nutrient treatments were initiated after the primary leaves had begun to unfold. Nutrient solutions containing N (10 mM) were prepared by adding KnO_3 or (NH_4) 2SO₄ to a N-free nutrient solution composed of: 1.9 mM CaSO₄, 4H₂O, 4.7 mM K₂SO₄, 1.0 mM MgSO₄. 7H₂O, 0.25 mM KH₂PO₄, 0.25 mM K_2 HPO₄, 18 μ M FeEDTA, and 1 ml of micronutrient stock solution containing (g/l): 3.72 KCl, 1.54 H₃BO₃, 0.83 MnSO₄.H₂O, 0.57 ZnSO₄. 7H₂O, 0.125 CuSO₄.5H₂O, and 0.12 Na, MoO₄. 2H₂O. The K concentration of all solutions, including the N-free solution, was made equal to that of the 10 mM KNO₂ solution by adding the appropriate amounts of K₂SO₄. The initial pH of the treatment solutions ranged from 5.8 to 6.0. Plants were cultured in an unshaded greenhouse. Illumination was provided by daylight, supplemented with incandescent lamps. During daylight hours, ambient temperatures were kept below 37°C with evaporative cooling. Night temperature was allowed to equilibrate with outdoor temperature by leaving vents open. The RH ranged from 40 to 50 % at midday and from 80 to 90 % at night.

Analytical procedure

At harvest (34 days from germination), plants were separated into leaves, stem plus petioles, and roots plus nodules. Root samples were rinsed twice in deionized water to remove surface contaminants. Plant material was dried in a forced air oven at 75°C for 48 hr. Dry weights were recorded and the dried materials were ground in a stainless steel Wiley mill using a 30 mesh screen. Ammonium nitrogen was determined by Kjeldahl analysis [7] and iron determination was made by atomic absorption spectrophotometry. The data were then statistically analysed by the method of Steel and Torrie [8].

Results and Discussion

Dry matter and nitrogen

The overall growth of N₂-dependent plants was restricted, relative to plants supplied with NO₃-N, due to N stress (evidenced by yellow leaves during the first week of growth). At harvest, however, the leaves of plants dependent on NO₃ or N₂-N were of normal green color and it was evident that nodules became capable of supplying adequate N for growth. The latter was further supported by similarities among treatments in the N percentage of the leaves (Tables 1 and 2). At the N concentration used in this study (10 mM), NO₃⁻ and NH⁺₄ forms inhibited nodulation and, therefore these plants were almost exclusively dependent upon NO₃ or NH₄ for their N supply.

The greatest production of dry matter took place in NO₃-dependent plants followed by N₂ and NH₄-dependent plants, respectively (Table 1). The total accumulation of N (Table 3) followed a similar trend as the production of dry matter in relation to N form. Plants deriving varying amounts of N from the different N forms followed about the same proportions of the total dry matter to the different plant parts. About 50-60 % of the total dry matter accumulated by plants was allocated to the leaves irrespective of N form. The relative distribution among plant parts varied with the source of N (Table 1). The growth of the stem was proportionally the same, in relation to the rest of the plant in all the three N forms (21-25 % of the total). Thus, the morphological appearance of the plant was altered in terms of size but not in proportion. These observations are in agreement with those reported by DeJong and Phillips [9] for Alaska peas.

The poorest dry matter production in NH_4 -fed plants (Table 1) may be, in part, attributed to a possible release of H ions associated with NH_4 uptake which may have led to acidification of the growing media to a point that limited somewhat root growth, or due to an accumulation of NH_4 ions in the cytoplasm which become toxic to the plant [10 and 11].

Ammonium fed plants exhibited physiological and morphological disorders in comparison to those dependent on $N0_3$ or N_2 for their N supply. These disorders were observed as chlorosis of the leaves, restricted growth, necrotic spots, and, in some cases, death of the leaves.

The mechanism of NH_4^+ toxicity is not known. It has been suggested that NH_4 ions substitute for K ions and prevent the latter from fulfilling their role in protein structure [12]. There is also evidence that NH_4^+ effectively inhibits respiration [13]. Photosynthesis may also be restricted by NH_4 ions through the uncoupling of noncyclic photo-phosphorylation [14]. This may explain why the total root mass (dry weight) was significantly lower in NH_4 -fed plants as compared to NO_3 or N_2 -depen-

Nitrogen form	Genotype	Dry matter					
		Root	Stem	Leaves	Total		
		g/plant					
NO,	НА	0.57a*	0.75a	1.75a	3.07a		
.,	PI	0.50b	0.77a	1.73b	3.00b		
NH4	HA	0.16e	0.14c	0.35d	0.65e		
	PI	0.14f	0.13c	0.35d	0.62f		
N ₂	HA	0.30d	0.44b	1.12c	1.86d		
	PI	0.35c	0.45b	1.13c	1.93c		

 Table 1.
 Dry matter yield of HA and PI soybean genotypes as affected by nitrogen form in the nutrient solution.

* values are means of four replicates.

Means within a column followed by the same letter are not significantly different at P = 0.05 according to Duncan's Multiple Range Test.

dent plants (Table 1), and may also explain, to some degree, the reduction of dry matter produced by NH_4 -grown plants in spite of the presence of nearly equal (if not higher) amounts of N within the tissue as in plants grown with NO_3 or N_2 -N. The two soybean genotypes tested gave almost the same response regarding the N forms (Tables 1, 2 and 3).

 Table 2.
 Nitrogen and iron content of HA and PI soybean genotypes as affected by nitrogen form in the nutrient solution.

<u> </u>	Nitrogen			Iron			
Genotype	Root	Stem	Leaves	Root	Stem	Leaves	
	%			$\mu g/g dry matter$			
HA	2.97a	1.97c	3.96a	133.75d*	48.75b	132.50ab	
PI	2.89b	1.88d	3.84b	91.25e	43.75b	62.00d	
НА	3.01a	3.02a	3.94a	356.25a	110.00a	138.75a	
PI	2.95ab	2.86b	3.94a	197.50b	38.75b	138.75a	
HA	1.46c	1.70e	3.77b	140.00d	48.005	121.25b	
PI	1.47c	1.66e	3.76b	172.50c	42.50b	105.00c	
	HA Pl HA Pl HA Pl	HA 2.97a PI 2.89b HA 3.01a PI 2.95ab HA 1.46c PI 1.47c	Root Stem HA 2.97a 1.97c PI 2.89b 1.88d HA 3.01a 3.02a PI 2.95ab 2.86b HA 1.46c 1.70e PI 1.47c 1.66e	Root Stem Leaves HA 2.97a 1.97c 3.96a PI 2.89b 1.88d 3.84b HA 3.01a 3.02a 3.94a PI 2.95ab 2.86b 3.94a HA 1.46c 1.70e 3.77b PI 1.47c 1.66e 3.76b	Root Stem Leaves Root HA 2.97a 1.97c 3.96a 133.75d* PI 2.89b 1.88d 3.84b 91.25e HA 3.01a 3.02a 3.94a 356.25a PI 2.95ab 2.86b 3.94a 197.50b HA 1.46c 1.70e 3.77b 140.00d PI 1.47c 1.66e 3.76b 172.50c	Root Stem Leaves Root Stem HA 2.97a 1.97c 3.96a 133.75d* 48.75b PI 2.89b 1.88d 3.84b 91.25e 43.75b HA 3.01a 3.02a 3.94a 356.25a 110.00a PI 2.95ab 2.86b 3.94a 197.50b 38.75b HA 1.46c 1.70e 3.77b 140.00d 48.00b PI 1.47c 1.66e 3.76b 172.50c 42.50b	

* values are means of four replicates.

Means within a column followed by the same letter are not significantly different at P = 0.05 according to Duncan's Multiple Range Test.

Nitrogen form	Plant part	<u> </u>		Fe	
		HA	PI	HA	PI
		mg/plant		μ/plant	
NO3	root	16.13*	14.45	76.24	45.62
	stem	14.77	14.48	36.56	33.69
	leaves	69.30	66.43	231.87	107.26
	total	101.00	95.36	344.67	186.57
NH ₄	root	4.82	4.13	57.00	27.50
	stem	4.23	3.72	15.40	5.04
	leaves	13.79	13.79	48.56	48.56
	total	22.84	21.64	120.96	81.10
N ₂	root	4.38	5.14	42.00	60.37
	stem	7.48	7.47	19.80	19.12
	leaves	42.22	42.49	135.80	118.65
	total	54.10	55.10	197.60	198.14

 Table 3.
 Total N and Fe uptake of HA and PI soybean genotypes as affected by nitrogen form

* values are means of four replications.

Iron

Data presented in Table 2, show clearly that the Fe-efficient genotype HA was more efficient in taking up Fe than the Fe-inefficient genotype PI. The Fe content was also influenced by the N source with the greatest content being produced with the NH_4 source. The total Fe uptake was higher for HA than for the PI soybean plants under all N treatments but the PI plants translocated the same amount of Fe to the leaves as did the HA in the NH_4 treatment. These differences in Fc uptake among the two soybean genotypes are mainly due to the genetic control of Fe uptake [4].

The Fe-efficient genotype HA produces more H ions and reductant than does the Fe-inefficient genotype PI. Acidic as well as reducing conditions are known to increase Fe availability and plant uptake (Table 2). The effect of N source may be due to a release of H⁺ ions to the root medium, as a result of NH⁺₄ intake or N₂ fixation. The lack of such H ions release by the NO₃ supplied plants resulted in less Fe uptake. These results agree with those obtained by Israel and Jackson [2]. The total Fe uptake was higher for HA plants than for PI plants at any N treatment (Table 3). The reduction in total Fe uptake in both genotypes when plants were supplied with NH₄ is due mainly to the reduction in dry matter production as a result of NH₄ toxicity as mentioned earlier. Z.T. Sliman

In conclusion, one may speculate about the results obtained, with much of this speculation based on a greater production of H ions and therefore a lower root surface pH for the HA than for the PI genotypes. First, Fe uptake is related to the production of H ions as indicated by the greater uptake leads mainly to an accumulation of Fe in the roots. Therefore, there must be a second Fe control mechanism that controls Fe translocation to the plant tops. This second mechanism itself. It has been suggested that Fe translocation may be limited by the amount of organic anion such as citrate available to form a negatively charged species for Fe translocation [15].

Last, if the production of H⁺ ions in the presence of NH_4^+ is the cause of reduced growth, there should be greater reduction in growth for the HA than for the PI genotype due to greater H⁺ ion production. Since the growth reduction was very similar, the NH_4^+ toxicity mechanism may be NH_4^+ accumulation in the plant rather than acidity.

Acknowledgement. The author wishes to express his thanks to Dr. R.L. Bernard, USDA, University of Illinois, Urbana, USA, for providing soybean seeds.

References

- Munns, D.N., and Fox, R.L. "Comparative Lime Requirements of Tropical and Temperate Legumes." *Plant* and *Soil*, 46 (1976), 533-548.
- [2] Israel, D.W., and Jackson, W.A. "Ion Balance, Uptake, and Transport Processes in N₂-Fixing and Nitrate-and Urea-Dependent Soybean Plants." *Plant Physiol.*, 69 (1982), 171-178.
- [3] Wallace, A., and Wallace, G.A. "Effects of Nitrogen Source, Iron, and Bicarbonate on pH of Nutrient Solution." J. Plant Nutr., 5 No.4-7 (1982), 729-735.
- [4] Brown, J.C., Ambler, J.E., Chaney, R.D., and Foy, C.D. Differential Responses of Plant Genotypes to Micronutrients. In: J.J. Mortvedt, P.M. Giordano, and W.L. Lindsay. (ed.), Micronutrients in Agriculture. Madison, Wis.: Soil Sci. Soc. Am. Inc., 1972.
- [5] Landsberg, E. "Organic Acid Synthesis and Release of Hydrogen Ions in Response to Fc Deficiency Stress of Mono- and Dicotyledonous Plant Species." J. Plant Nutr., 3 No. 1-4 (1981), 579-591.
- [6] Brown, J.C., Weber, C.R. and Coldwell, B.E. "Efficient and In-efficient Use of Iron by Two Soybean Genotypes and Their Isolines." Agron. J., 59 (1967), 459-462.
- [7] Mann, L.T. "Spectrophotometric Determination of Nitrogen in Total Micro-Kjeldahl Digests." Anal. Chem., 35 (1962), 2179-2182.
- [8] Steel, R.G.D., and Torrie, J.H. Principles and Procedures of Statistics. 2nd ed. N.Y.: McGraw-Hill Book Company, Inc., 1980.

200

- [9] DeJong, T.M., and Phillips, D.A. "Nitrogen Stress and Apparent Photosynthesis in Symbiotically Grown Pisum Sativum L." Plant Physiol., 68 (1981), 309-313.
- [10] Lahav, E., Harper, J.E., and Hageman, R.H. "Improved Soybean Growth in Urea with pH Buffered by a Carboxy Resin." Crop Sci., 16 (1976), 325-328.
- [11] Raven, J.A., and Smith, F.A. "Nitrogen Assimilation and Transport in Vascular Land Plants in Relation to Intercellular pH Regulation." New Phytol., 76 (1976), 415-431.
- [12] Baker, A.V., Maynard, D.M., and Lachman, W.H. "Induction of Tomato Stem and Leaf Lessions, and Potassium Deficiency by Excessive Ammonium Nutrition." Soil Sci., 103 (1966), 319-327.
- [13] Vines, H.M., and Wedding, R.T. "Some Effects of Ammonia on Plant Metabolism and Possible Mechanism for Ammonia Toxicity." *Plant Physiol.*, 35 (1960), 820-835.
- [14] Gibbs, M., and Calo, N. "Factors Affecting Light Induced Fixation of Carbon Dioxide by Isolated Spinach Chloroplasts." *Plant Physiol.*, 34 (1959), 318-323.
- [15] Brwon, J.C., and Chaney, R.L. "Effect of Iron on the Transport of Citrate Into Xylem of Soybeans and Tomatoes." *Plant Physiol.*, 47 (1971), 836-840.

العلاقة بين صور النيتروجين وامتصاص الحديد بواسطة نبات فول الصويا

زغلول طه سليمان قسم الإنتاج النباقي، كلية الزراعة، جامعة الملك سعود، الرياض، المملكة العربية السعودية

ملخص البحث. أجريت التجربة تحت ظروف الصوبة الزجاجية لدراسة تأثير صور النيتروجين المختلفة ((نترات، أمونيا وأزوت جوى) على النمو وامتصاص الحديد بواسطة صنفين من نبات فول الصويا -Haw. keye (HA), PI54619-5-1 (PI)

وقد أوضحت الدراسة أن النباتات المعاملة بالأمونيوم كمصدر للنيتروجين كانت محدودة النمو، قزمية مع ظهور الاصفرار وكان السلوك العام للنبات من حيث المادة الجافة المتحصل عليها حسب المعاملات بالـترتيب NH₄ < N₂ < NO₃ وبـالنسبة لامتصاص الحديد، كان تركيز عنصر الحديد عاليًّا في معاملة الأمونيوم، بينها كان الحديد الكلي منخفضًا في المعاملة نفسها ويرجع ذلك أساسًا إلى الانخفاض في المادة الجافة بسبب سمية الأمونيوم .

وبالنسبة للأصناف، أوضحت النتائج أن هناك اختلافات معنوية بين الصنفين HA, PI من حيث امتصاص عنصر الحديد، حيث يعتبر الصنف HA أكثر كفاءة في امتصاص ونقل الحديد من الصنف PI.