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Abstract. A single-accurate exponential equation is presented to estimate the friction correction factor for
center-pivot systems. The proposed equation is simpler than and well agreed with the previously developed
equations of the correction friction factors. For a large number of outlets, two simplified forms have also been
presented. The presented equation and its subsequently derived forms are uniquely functions of the number of
outlets N and the flow exponent m of the used friction formula. Also, the Christiansen friction correction factor,
originally devised for systems where discharge decreases linearly with distance, was adapted to simply and
accurately estimate the friction correction factor and, consequently, to facilitate the head loss calculation in the
center-pivot laterals. The developed formulas of the friction correction factors were compared to the previously
proposed equations. The results showed well agreement between the present and the previous equations for
determining the friction correction factors for center-pivots laterals. Numerically documented and field
examples have been used to test the presented equations. The examples outputs revealed that the equations can
be used to determine the friction correction factors for a pipe of non-uniformly discharging outlets with
insignificant errors. For practical number of outlets for center-pivot laterals, the errors were mostly in the
vicinity of + 2 %.

Introduction

The use of center-pivot systems has spread worldwide. The wide use of center-pivot
systems might be attributed to the desire of water and energy conservation. Although
different center-pivot systems have been invented, the hydraulics attains similarity and
subjects to the mechanism of water flow in pipes. In other words, when water flows into
a pipeline, an energy head loss occurs due to friction. The friction head loss is essential
to the analysis (design, evaluation, and management) of pressurized irrigation systems. It
is essential due to the fact that it has strong impact on the irrigation efficiency and,
consequently, on the water conservation. It is known that the proper estimate of the
friction head loss will help in determining the pressure distribution along the irrigation
system laterals. The flow distribution will also be known and the system can accordingly
be judged.
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Basically, the energy loss in a pipe is directly related to the flow rate. Thus, the
energy head loss for pipes with no outlets is higher than for pipes with outlets, as the
case with laterals in the pressurized irrigation systems. In pipes with outlets, the friction
head loss is usually determined via a stepwise technique or by computing the head loss
with no outlets, and then a multiplier called friction correction factor (F) is used to
account for the decrease in the discharge along the lateral pipe. Since the discharge along
the lateral pipes may change linearly (periodic-move laterals) or non-linearly (center-
pivot laterals) with the distance, the friction correction factor will differ subsequently.
The general mathematical formulation of computing friction head loss in a multiple-
outlet pipe with flow decreasing linearly is as follows:

hy =F-h, &)
And the formulation for non-linearly decreased flow is written as:

S 2
hfcp - Fcp ’ hf ( )

In (1), 4; is the energy loss due to friction with multiple outlets of linear decline in
discharge, F is the corresponding correction friction factor, and h; is the total friction
head loss where there is only one outlet. In (2), A is the energy loss due to friction with
multiple outlets of varied discharge and F, is the corresponding correction friction
factor.

The friction head loss hs can be computed from an appropriate friction loss
equation. Several equations for the estimate of the friction head loss have been proposed.
While some equations used to compute h; were developed based on physical
considerations, others were empirically based. The Darcy-Weisbach is the most popular
friction head loss that was physically based and may be of the following form:

KL

h, Y

Q? @3)

where K is the units conversion factor equal to 0.0826, f is the Darcy-Weisbach friction
factor, L is the pipe length (m), Q is the flow rate (m?/s), D is the inside pipe diameter
(m). Due to tedious computation of f, particularly for routinely quick tasks, alternative
equations for h; estimate have been developed. Williams and Hazen [1] empirically
derived an alternative equation called Hazen-Williams equation, which is easier than
Darcy-Weisbach and commonly used in irrigation fields. The Hazen-Williams equation
for friction head loss estimate has the following from:
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K-L

f T ~1852 4871
Cw D

Q 1.852 (4)

where K is equal to 1.2x10% for L in m, D in mm, and Q in L/s; and Cyyy is the Hazen-
Williams friction factor that depends on the flow media. The other common methods for
f estimates are the equations of Scobey [2] and Watters and Keller [3]. The Scobey
equation has the following form:

K 'CS * L 1.9
h =—F%—Q (5)
where K equals 2.05x10% for L in m, D in mm, and Q in m%s; and Cs is the Scobey
coefficient of retardation equal to 0.40 for portable aluminum and 0.42 for steel. Watters
and Keller [3] combined the Darcy-Weisbach equation with Blasius [4] equation of f
factor and obtained the following:

K-L

hy = D47

-Q 175 ©)

in which K is equal to 1.387x10™ for L in m, D in mm, and Q in m?/s.

The friction correction factors in Egs. 1 and 2 have been estimated using different
techniques. Those techniques take into consideration that the friction head loss in a pipe
with water discharging out from the pipe lateral is less when the pipe has no side outlets,
but one at the end.

For equally spaced and uniformly discharging outlets, the most widely and
commonly used formula is that proposed by Christiansen [5]. When the distance from
the lateral inlet to the first outlet is equal to the distance between the two successive
sprinklers, F formula takes the following form:

1 1 m-1

= +—+ > U]
m+1 2N 6N

If the distance from the lateral inlet to the first outlet is equal to the half distance
between the two successive sprinklers, F is expressed as follows:

_2NF -1

05 TN —1 (8)

where m is the velocity exponent in the used friction equation and N is the number of
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outlets. The magnitude of the exponent m depends on the equation used to compute the
total head loss for pipes.

Neither equation 7 nor 8 is suitable for estimate of the friction correction factor in
center-pivot systems, as previously mentioned. Therefore, the friction correction factor
for a center-pivot system is differently computed by several proposed methods. Reddy
and Apolayo [6] developed a friction correction factor for center-pivots, which is of the
following form:

- 1+i{1——2]j )

The above equation is obviously valid for number of outlets greater than or equal to
2. Anwar [7] proposed two equations that are valid for any number of outlets, N > 1. For
constant spacing (increasing varied outflow), the equation takes the form:

L&
Ry =1gm 2 (NI =i7) (10)

And for constant outlets discharge (decreasing varied space), the equation has the
following form:

p N N MH05 ZI (\/N —i +1-VN _i) 11)

As seen from Eqgs. 10 and 11, the calculated friction factor for a given number of
outlets depends on the previous computations. In other words, the F¢, for a given N
requires the computation of N-1, which, in turns, requires the computation of N-2 and so
on. Compared to F obtained from Eq. 7, the computation of F, using either Eq. 10 or
Eq. 11 is quite tedious and somewhat cumbersome. Therefore, the objectives of this
research were:

1. To develop a simple formula to calculate the friction correction factor for
center-pivots, and
2. To modify the Christiansen equation to be suitable for center-pivots.

Development of Equations

Exponential equation
Different analysis tools can be used to trace the trend of a dependent variable
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affected by one or more independent variables. The non-linear regression analysis is a
valuably useful mathematical tool that can be used for that purpose. Direct use of the
regression analysis may however lead to undesired formulations. In the present research,
the concept of segregate analysis was considered and used to obtain a more suitable
formulation of the friction correction factor F¢,. As can be seen from Egs. 9-11, the F,
is a function of the number of outlets N and the velocity or flow exponent m in the
equation used for friction loss calculation. Mathematically:

F, =f (N,m) (12)

For a certain value of m and a changing N, an equation for F¢, was obtained using
non-linear regression and found to be of the following type:

_at+Na,

" 1+Na, 13)

cp

where a3, a, and a3 are coefficients that are functions of the flow exponent m. To
quantify the coefficients in Eq. 13, data were generated using the average values
obtained by Egs. 10 and 11. The average values were used since Egs. 10 and 11 gave
almost identical results [7]. The ranges of m and N used to generate data via Egs. 10 and
11 were 1.5 to 2.5 with increment of 0.25 and 1 to 150 with increment of 1 for m and N,
respectively. From non-linear regression and with algebraic manipulation, the resulted
equations for the coefficients in Eq. 13 were as follows:

5m
e V2
(ll = 0(2 =
4 (14)
6m
e T
a3:
T

Replacing the coefficients of Eq. 14 into Eq. 13, the F, is to be computed by the
following equation:

5m 5m
e” Ner~
+
_ T T
Fp = (15)
Ne ~
1+
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With rearrangement, Eq. 15 might be written as:
5m

1+N e =
FCp:( )Gm (16)
7+Ne ”

Equation 16 indicates that when the number of outlets increases, the term z in the
dominator becomes negligible and can be deleted. Thus, Eq. 16 can now be written as:

m5
1+N)e =
Fo Nt )e (17)
Ne ~

which can be reduced to a simpler form as follows:

r, =4 a9
Ne ~

Eq. 18 can further be rearranged and written as:

1+i

F =—2N (19)

cp m

er

By eliminating the term 1/N in (19) as the case for a large N, the F, can ultimately
be computed through the following simplest form of Eq. 16:

Fcp = _m (20)

Modified Christiansen equation

It is probably alike that the Christiansen equation, Eq. 7, is more convenient to use
than other equations. This is because it has been used for decades and the users are
familiar with. In its present form, the Christiansen F factor, however, is not applicably
valid for center-pivot systems. This is because the F is considerably smaller than F,.
The latter is larger because the flow reduction in the laterals of center-pivots is much less
near the pivot-end. Therefore, an effort has been made to modify Eq. 7 such that it can
suitably be used with center-pivot systems. When plotting F, values computed from Eqg.
16 versus F values obtained by using Eq. 7, not shown here, a relationship has been
realized and was of the following form:
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Fcp = BF J£7) (21)

From the regression analysis, the coefficients in Eq. 21 were found to be generally
independent of the flow exponent parameters m. Thus, the magnitudes of the coefficients
p1 and B, were rationally considered constant and equal to 1.0 and 0.567, respectively.
Thus, the modified Christiansen friction correction factor for center-pivots has the
following formulation:

0.567
1 + 1 Jm -1 (22)

= +
P Im+l 2N gN?2
In which all terms have previously been identified.
Discussion of Developed Equations

The errors in F¢, computed from Egs. 16, 19, 20 and 22 relative to the average
values obtained from Eqgs. 10 and 11 versus the number of outlets N are depicted in
Figures 1-4, respectively. In each figure, the parameter distinguishing one curve from
another is the flow exponent m. Three values of m, 1.852, 1.9 and 2 associated with the
most common h; methods, were considered. As depicted from Figure 1, the errors in
computing F¢, using Eq. 16 relative to the averaged values of Egs. 10 and 11 are
apparently insignificant for all m values. The low relative errors support the use of Eq.
16 over either Eq. 10 or Eq. 11. The simplicity of Eq. 16 is not the only reason for its
advantageous use, but the ease of remembrance compared to Egs. 10 and 11 is also a
merit. It can also be depicted from Fig. 1 that the relative errors for different m values,
1.852, 1.9 and 2, are not different and fall in the domain of + 2 to — 2%. It can,
consequently, be stated that the relative error in the F¢, obtained by Eq. 16 compared to
the averaged F, computed from Eqgs. 10 and 11 is with in £2 %.
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Fig. 1. Relative error in F¢, computed by using Eq. 16.
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Figure 2 shows the relative error in F¢, versus the number of outlets N with m
being the parameter distinguishing the curves. As depicted by the figure, the relative
error in estimating F¢, using Eq. 19 compared to the averaged values of F, obtained
from Egs. 10 and 11 also is insignificant, particularly for N equal to or greater than 2.
Nevertheless, the maximum relative error in F, obtained from Eg. 19 was found to be in
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Fig. 2. Relative error in Fg, computed by using Eq. 19.

the vicinity of £ 3 % for N greater than unity. For N equal to one, the relative error was
about 10.9 %.

Figure 3 indicates that the use of Eq. 20, the simplest form of Eq. 16, may lead to
high error in computing F,, specifically for N less than 15. However, the relative error
considerably decreases for N equal to or larger than 20. Practically, the use of Eq. 20
would lead to insignificant error because the number of sprinklers of a center-pivot
system will generally be larger than 20. For almost all standard pivots a value of F¢, =
0.555 (which occurs with 73 outlets) will give results that are accurate to within + 1%
[8]. The values of F, obtained from Egs. 16, 19 and 20 for m equal to 1.852 and N equal
to 73 are, respectively, 0.561, 0.562 and 0.555.

The error in computing F¢, using Eq. 22 relative to the averaged values of Egs. 10
and 11 is shown in Fig 4. For the common m values and for N ranging from one to
infinity, the figure indicates that the relative error is insignificant. Likely, the
insignificant relative error supports the use of modified Christiansen, Eq. 22, over either
Eqg. 10 or Eq. 11. It is depicted from Fig. 4 that the relative errors for different m values,
1.852, 1.9 and 2, are identically small and fall in a domain approximately ranging from +
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2 to — 2 %. In general, the relative error in F¢, obtained by Eg. 22 compared to the
averaged F, computed from Egs. 10 and 11 is with in + 2 %.
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Fig. 3. Relative error in F¢, computed by using Eq. 20.
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Fig. 4. Relative error in F¢, computed by modified Christiansen method.

To demonstrate and assess the applicability of the presented equations, well
numerically documented examples and one field application are used. The numerical
examples were taken from Anwar [7] and Schwab et al. [9]. The field example was
provided by an agricultural company, which is Hail Agricultural Development Company
(HADCO). The outputs of the three examples are summarized and shown in Table 1. In
addition, the statistical parameters, average AVG, standard deviation STDEV and
coefficient of variation CV, for F¢, are also provided in Table 1. The stepwise technique
was the reference method used to compare and judge the Fg methods. When the
stepwise technique was not used, the method originally applied in the example was
considered as the reference method for the comparison and judgment. The results of
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example 1 shown in Table 1 indicate that the highest error of F, estimate is expectantly
associated with Eq. 20 and equal to -3.29 %. Surprisingly, the lowest error was
associated with modified Christiansen method, Eq. 22 that is equal to -0.66 %. All F,
methods apparently gave identical outputs as reflected by the low STDEV and CV
values that are 0.006 and 0.012. This was anticipated because the number of outlets is
very large, N = 67. The similar conclusion can be stated for outputs of example 2, except
that Eg. 20 gave a high error in estimating F, that is attributed to small number of
outlets, N =10. The modified Christiansen again has the lowest error in predicting F,. It
is clear from Table 1 that the STDEV and CV values are higher for example 2 compared
to those of example 1 due to the decrease in N from 67 to 10 outlets. The results of the
field example don’t differ much from the outputs of example 1 because of the large
value of N, which is equal to 158 outlets. The considerably small values of STDEV and
CV values reflect the close agreement of all used F, methods, as depicted in Table 1. In
other words, the minor differences among the F, values obtained from the different
equations (Egs. 16, 19, 20 and 22) support the validity of them all.

Table 1. Comparison of F, methods using numerical and field examples

Numerical Example # 1 [7]: N =67, m =2, hy = 11.1 m, F¢, = 0.547

Method | Fe (dimensionless) | ht (M) | Error (%)
Stepwise 0.547 6.07 0.00
Egs. 10 and 11 [7] 0.541 6.01 -0.99
Eq. 16 0.536 5.95 -1.98
Eq. 19 0.537 5.96 -1.81
Eq. 20 0.529 5.87 -3.29
Modified Christiansen, Eqg. 22 0.543 6.03 -0.66

AVG = 0.539, STDEV = 0.006, CV =0.012 |

Numerical Example #2 [9]: N =10, m = 1.9, hs =9.81 m, F, = 0.579 (average of all F, values).

Schwab et al. [9] 0.540" 5.30 -6.69
Egs. 10 and 11[7] 0.593 5.82 2.46
Eq. 16 0.596 5.85 2.99
Eq. 19 0.604 5.93 4.40
Eq. 20 0.546 5.36 -5.63
Modified Christiansen, Eq. 22 0.592 5.81 2.29

AVG = 0.579, STDEV = 0.028, CV = 0.048

Field Example # 3 (HADCO): N = 158, m = 1.852, h; = 14.86 m, F, = 0.555

Stepwise 0.555 8.25 0.00
Keller & Bliesner [8] 0.553 8.22 -0.32
Egs. 10 and 11[7] 0.551 8.19 -0.68
Eqg. 16 0.558 8.29 0.53
Eqg. 19 0.558 8.29 0.53
Eqg. 20 0.555 8.25 0.00
Modified Christiansen, Eq. 22 0.554 8.23 -0.19

AVG = 0.555, STDEV =0.003, CV =0.015 |
* It is felt that 0.54 is too low and it may was intended to use 0.59 instead.
AVG = Average of F¢,
STDEV = Standard deviation of F,
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CV = Coefficient of variation of F,

It should be emphasized that the presented equations can accurately be used to
compute F, for flow cases of equally and variably spaced outlets. This is because the
friction correction factor for center-pivots with constant outlets spacing was found to be
similar to the friction correction factor for center-pivots with constant outlets discharge
[7]. In fact, the close agreement between Eqgs. 10 and 11 has also been studied.

Estimating F from F¢p

It is worth mentioning that Eq. 16 can easily be adjusted and accurately used to
determine the friction correction factor F for linear-moved sprinkle systems. This can be
achieved by equating Eqgs. 16 and 22, that is:

5m
(1+N )e - . . — 0.567
FCP = om + + 2 (23)
= m+1 2N 6N
7+Ne ”

The term between brackets is merely the F factor and Eq. 23 can thus be written as:

5m
1+N)e~

Foo = % =[FT™ (24)
7+Ne”

Accordingly, the exponential function for F factor is obtained and takes the
following form:

1
5m o567
(1+N)e ~
6m (25)
7+Ne”

F =

The same concept can also be applied for Egs. 19 and 20, which can, respectively,
be written as follows:

F=|—N (26)

and
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L
0.567

Fo| L (27)

e
In addition, the F can be estimated by adjusting Egs. 10 and 11 that can,
respectively, be written as follows:
1

RN
F=—ma {Z' (2'\'")} (28)

N 0567 i=1

and

F= 1+0_5 {ZN:im(\/N—Hl—\/N—i)}o'5167 (29)

N W i=1

Figure 5 illustrates the relationship between F computed by the different methods

for m equal to 1.852 versus the number of outlets N. It is obviously depicted from the

figure that the F can be determined by Egs. 7, 25 and 28 or 29 with insignificant errors.

The close agreement of the curves in Fig. 5 indirectly supports the accuracy of the
developed equations for F, determination.
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Fig. 5. Comparison of F methods for flow exponent m = 0.1852.
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Three numerical examples have been used to demonstrate the applicability of the
equations used to estimate F. While one example was taken from Schwab et al. [9], the
other two examples were taken from [8]. The summarized results of the three examples,
in addition to AVG, STDEV and CV of F are presented in Table 2. The results of
example 1 depicted in Table 2 illustrate that the highest errors of F estimate are
associated with Egs. 25 and 26 that equal 3.05 and 3.61 %, respectively. The lowest error
was associated with Egs. 28 and 29. The Christiansen method, Eq. 7, has an error of 1.66
that is equal to the absolute error associated with Eq. 26. It can generally be stated that
all presented F methods gave almost identical outputs as reflected by the low STDEV
and CV values that are 0.007 and 0.019, respectively. This was anticipated because the
number of outlets is large, N = 33.

Table 2. Comparison of F methods using numerical examples

Numerical Example # 1 [8]: N =33, m = 1.852, hf =20.04 m, F = 0.360

Method | F(dimensionless) | hr (M) [ Error (%)
Keller & Bliesner [8] 0.360 7.21 0.00
Egs. 28 and 29 0.363 7.27 0.83
Eq. 25 0.371 7.43 3.05
Eq. 26 0.373 747 3.61
Eq. 27 0.354 7.09 -1.66
Christiansen [5], Eq. 7 0.366 7.33 1.66

AVG = 0.365, STDEV =0.007, CV =0.019 |
Numerical Example # 2 [8]: N =10, m = 1.852, h¢ = 86.43 m, F = 0.4023

Stepwise 0.4023 34.77 0.00
Keller & Bliesner [8] 0.4000 34.57 -0.57
Egs. 28 and 29 0.4040 34.92 0.42
Eqg. 25 0.4120 35.61 241
Eq. 26 0.4180 36.13 3.90
Eq. 27 0.3540 30.60 -12.00
Christiansen [5], Eq. 7 0.4020 34.75 -0.07

AVG =0.399, STDEV =0.023, CV = 0.057

Numerical Example # 3 [9]: N=72, m =1.75, hf =0.79 m, F = 0.38

Schwab et al. (9) 0.380 0.300 0.00
Eqgs. 28 and 29 0.367 0.290 -3.33
Eq. 25 0.383 0.303 1.00
Eq. 26 0.384 0.303 1.00
Eq. 27 0.374 0.295 -1.67
Christiansen [5], Eq. 7 0.371 0.293 -2.33

AVG = 0.377, STDEV = 0.007, CV = 0.018 |

AVG = Average of F
STDEV = Standard deviation of F
CV = Coefficient of variation of F
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The outputs of example 2 shown in Table 2 show the all F methods, except Eq. 27,
have lead to low errors. The large relative error, -12.00 %, associated with Eq, 26 is
because of the small N, 10 outlets. Example 3 shows that the highest relative errors are
related to Eq. 7, Eq. 28 and 29. These high errors may be attributed to the fact that these
methods give high errors for low m values.

Conclusion

The current work showed that a simple equation written in different forms can
accurately be used to determine the friction correction factor for center-pivot systems.
The equation and its derived forms are of the exponential type and functions of the
velocity exponent m and the number of outlets N. With slight adjustment, it has also
been shown that the friction correction factor can accurately be computed from the
Christiansen F factor originally developed for equally spaced and uniformly discharging
outlets.

Numerical and field examples were used to demonstrate the applicability of the
presented formulas. The examples outputs encourage the use of the developed equations
to compute the friction correction factors for center-pivots and for similar type flow
circumstances. It is expected that the proposed equations will facilitate the hydraulic
analysis of the laterals of center-pivots and systems similarly characterized.
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