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Abstract. A single-accurate exponential equation is presented to estimate the friction correction factor for 
center-pivot systems. The proposed equation is simpler than and well agreed with the previously developed 
equations of the correction friction factors. For a large number of outlets, two simplified forms have also been 
presented. The presented equation and its subsequently derived forms are uniquely functions of the number of 
outlets N and the flow exponent m of the used friction formula. Also, the Christiansen friction correction factor, 
originally devised for systems where discharge decreases linearly with distance, was adapted to simply and 
accurately estimate the friction correction factor and, consequently, to facilitate the head loss calculation in the 
center-pivot laterals. The developed formulas of the friction correction factors were compared to the previously 
proposed equations. The results showed well agreement between the present and the previous equations for 
determining the friction correction factors for center-pivots laterals. Numerically documented and field 
examples have been used to test the presented equations. The examples outputs revealed that the equations can 
be used to determine the friction correction factors for a pipe of non-uniformly discharging outlets with 
insignificant errors. For practical number of outlets for center-pivot laterals, the errors were mostly in the 
vicinity of ± 2 %. 
 

Introduction 
 

The use of center-pivot systems has spread worldwide. The wide use of center-pivot 
systems might be attributed to the desire of water and energy conservation. Although 
different center-pivot systems have been invented, the hydraulics attains similarity and 
subjects to the mechanism of water flow in pipes. In other words, when water flows into 
a pipeline, an energy head loss occurs due to friction. The friction head loss is essential 
to the analysis (design, evaluation, and management) of pressurized irrigation systems. It 
is essential due to the fact that it has strong impact on the irrigation efficiency and, 
consequently, on the water conservation. It is known that the proper estimate of the 
friction head loss will help in determining the pressure distribution along the irrigation 
system laterals. The flow distribution will also be known and the system can accordingly 
be judged. 
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Basically, the energy loss in a pipe is directly related to the flow rate. Thus, the 
energy head loss for pipes with no outlets is higher than for pipes with outlets, as the 
case with laterals in the pressurized irrigation systems. In pipes with outlets, the friction 
head loss is usually determined via a stepwise technique or by computing the head loss 
with no outlets, and then a multiplier called friction correction factor (F) is used to 
account for the decrease in the discharge along the lateral pipe. Since the discharge along 
the lateral pipes may change linearly (periodic-move laterals) or non-linearly (center-
pivot laterals) with the distance, the friction correction factor will differ subsequently. 
The general mathematical formulation of computing friction head loss in a multiple-
outlet pipe with flow decreasing linearly is as follows: 
 

f̂ fh F h= ⋅  (1) 

 
And the formulation for non-linearly decreased flow is written as:  
 

f̂cp cp fh F h= ⋅  (2) 

 
In (1), ĥRfR is the energy loss due to friction with multiple outlets of linear decline in 

discharge, F is the corresponding correction friction factor, and hRfR is the total friction 
head loss where there is only one outlet. In (2), ĥRfcpR is the energy loss due to friction with 
multiple outlets of varied discharge and FRcpR is the corresponding correction friction 
factor. 

 
The friction head loss hRfR can be computed from an appropriate friction loss 

equation. Several equations for the estimate of the friction head loss have been proposed. 
While some equations used to compute hRfR were developed based on physical 
considerations, others were empirically based. The Darcy-Weisbach is the most popular 
friction head loss that was physically based and may be of the following form: 

 
2

5f
K f Lh Q

D
⋅ ⋅

= ⋅  
 

(3) 

      
where K is the units conversion factor equal to 0.0826, f is the Darcy-Weisbach friction 
factor, L is the pipe length (m), Q is the flow rate (mP

3
P/s), D is the inside pipe diameter 

(m). Due to tedious computation of f, particularly for routinely quick tasks, alternative 
equations for hRfR estimate have been developed. Williams and Hazen [1] empirically 
derived an alternative equation called Hazen-Williams equation, which is easier than 
Darcy-Weisbach and commonly used in irrigation fields. The Hazen-Williams equation 
for friction head loss estimate has the following from: 
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1.852
1.852 4.871f
HW

K Lh Q
C D

⋅
= ⋅

⋅
 

 
(4) 

     
where K is equal to 1.2x1010 for L in m, D in mm, and Q in L/s; and CHW

 

 is the Hazen-
Williams friction factor that depends on the  flow media. The other common methods for 
f estimates are the equations of Scobey [2] and Watters and Keller [3]. The Scobey 
equation has the following form: 

1.9
4.9
S

f
K C Lh Q

D
⋅ ⋅

= ⋅  
 

(5) 

 
where K equals 2.05x1012 for L in m, D in mm, and Q in m3/s; and CS

 

 is the Scobey 
coefficient of retardation equal to 0.40 for portable aluminum and 0.42 for steel. Watters 
and Keller [3] combined the Darcy-Weisbach equation with Blasius [4] equation of f 
factor and obtained the following: 

1.75
4.75f

K Lh Q
D
⋅

= ⋅  
 

(6) 

      
in which K is equal to 1.387x1011 for L in m, D in mm, and Q in m3

 
/s. 

The friction correction factors in Eqs. 1 and 2 have been estimated using different 
techniques. Those techniques take into consideration that the friction head loss in a pipe 
with water discharging out from the pipe lateral is less when the pipe has no side outlets, 
but one at the end. 

 
For equally spaced and uniformly discharging outlets, the most widely and 

commonly used formula is that proposed by Christiansen [5]. When the distance from 
the lateral inlet to the first outlet is equal to the distance between the two successive 
sprinklers, F formula takes the following form: 

 

2

1 1 1
1 2 6

mF
m N N

−
= + +

+
 

 
(7) 

 
If the distance from the lateral inlet to the first outlet is equal to the half distance 

between the two successive sprinklers, F is expressed as follows: 
 

0.5
2 1
2 1
NFF
N

−
=

−
 

 
(8) 

 
where m is the velocity exponent in the used friction equation and N is the number of 
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outlets. The magnitude of the exponent m depends on the equation used to compute the 
total head loss for pipes. 
 

Neither equation 7 nor 8 is suitable for estimate of the friction correction factor in 
center-pivot systems, as previously mentioned. Therefore, the friction correction factor 
for a center-pivot system is differently computed by several proposed methods. Reddy 
and Apolayo [6] developed a friction correction factor for center-pivots, which is of the 
following form: 

 
1

2
2 1

1 21 1
m

N i

cp
i j

F j
N N

−

= =

  
 = + − 
   
∑ ∑  

 
 

(9) 
 

 
The above equation is obviously valid for number of outlets greater than or equal to 

2. Anwar [7] proposed two equations that are valid for any number of outlets, N ≥ 1. For 
constant spacing (increasing varied outflow), the equation takes the form: 

 

( )2
2 1

1

1 2
N m

cp m
i

F Ni i
N +

=

= −∑  
 

(10) 

     
And for constant outlets discharge (decreasing varied space), the equation has the 

following form: 
 

( )0.5
1

1 1
N

m
cp m

i
F i N i N i

N +
=

= − + − −∑  
 

(11) 

 
As seen from Eqs. 10 and 11, the calculated friction factor for a given number of 

outlets depends on the previous computations. In other words, the Fcp for a given N 
requires the computation of N–1, which, in turns, requires the computation of N–2 and so 
on. Compared to F obtained from Eq. 7, the computation of Fcp

 

 using either Eq. 10 or 
Eq. 11 is quite tedious and somewhat cumbersome. Therefore, the objectives of this 
research were: 

1. To develop a simple formula to calculate the friction correction factor for 
center-pivots, and 

2. To modify the Christiansen equation to be suitable for center-pivots. 
 

Development of Equations 
 

Exponential equation 
Different analysis tools can be used to trace the trend of a dependent variable 
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affected by one or more independent variables. The non-linear regression analysis is a 
valuably useful mathematical tool that can be used for that purpose. Direct use of the 
regression analysis may however lead to undesired formulations. In the present research, 
the concept of segregate analysis was considered and used to obtain a more suitable 
formulation of the friction correction factor Fcp. As can be seen from Eqs. 9-11, the Fcp

 

 
is a function of the number of outlets N and the velocity or flow exponent m in the 
equation used for friction loss calculation. Mathematically:  

( , )cpF f N m=  (12) 

For a certain value of m and a changing N, an equation for Fcp

 

 was obtained using 
non-linear regression and found to be of the following type: 

1 2

31cp
NF

N
α α

α
+

=
+

 
 

(13) 

 
where α1, α2 and α3

 

 are coefficients that are functions of the flow exponent m. To 
quantify the coefficients in Eq. 13, data were generated using the average values 
obtained by Eqs. 10 and 11. The average values were used since Eqs. 10 and 11 gave 
almost identical results [7]. The ranges of m and N used to generate data via Eqs. 10 and 
11 were 1.5 to 2.5 with increment of 0.25 and 1 to 150 with increment of 1 for m and N, 
respectively. From non-linear regression and with algebraic manipulation, the resulted 
equations for the coefficients in Eq. 13 were as follows: 

5

1 2

6

3

m

m

e

e

π

π

α α
π

α
π


= = 


=


 
 

 
 
 

(14) 

 
Replacing the coefficients of Eq. 14 into Eq. 13, the Fcp

 

 is to be computed by the 
following equation: 

5 5
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With rearrangement, Eq. 15 might be written as: 

( )
5

6

1
m

cp m

N e
F

Ne

π

ππ

+
=

+
 

 
 

(16) 

     
Equation 16 indicates that when the number of outlets increases, the term π in the 

dominator becomes negligible and can be deleted. Thus, Eq. 16 can now be written as: 
 

( )
5

6

1
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N e
F

Ne

π

π

+
=  

 
 

(17) 

 
which can be reduced to a simpler form as follows: 
 

( )1
cp m

N
F

Ne π

+
=  

 
(18) 

 
Eq. 18 can further be rearranged and written as:  
 

π
mcp

e

NF

11+
=  

 
 

(19) 

 

By eliminating the term 1/N in (19) as the case for a large N, the Fcp

 

 can ultimately 
be computed through the following simplest form of Eq. 16: 

π

= mcp

e
F 1

 
 

(20) 

  
Modified Christiansen equation 

It is probably alike that the Christiansen equation, Eq. 7, is more convenient to use 
than other equations. This is because it has been used for decades and the users are 
familiar with. In its present form, the Christiansen F factor, however, is not applicably 
valid for center-pivot systems. This is because the F is considerably smaller than Fcp. 
The latter is larger because the flow reduction in the laterals of center-pivots is much less 
near the pivot-end. Therefore, an effort has been made to modify Eq. 7 such that it can 
suitably be used with center-pivot systems. When plotting Fcp values computed from Eq. 
16 versus F values obtained by using Eq. 7, not shown here, a relationship has been 
realized and was of the following form: 
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21=cpF F ββ  (21) 

 
From the regression analysis, the coefficients in Eq. 21 were found to be generally 

independent of the flow exponent parameters m. Thus, the magnitudes of the coefficients 
β1 and β2

 

 were rationally considered constant and equal to 1.0 and 0.567, respectively. 
Thus, the modified Christiansen friction correction factor for center-pivots has the 
following formulation: 

 −
= + + 

+ 

0.567

cp 2
1 1 m 1F

m 1 2 N 6 N
 

 
(22) 

 

In which all terms have previously been identified. 
 

Discussion of Developed Equations 
 

The errors in Fcp computed from Eqs. 16, 19, 20 and 22 relative to the average 
values obtained from Eqs. 10 and 11 versus the number of outlets N are depicted in 
Figures 1-4, respectively. In each figure, the parameter distinguishing one curve from 
another is the flow exponent m. Three values of m, 1.852, 1.9 and 2 associated with the 
most common hf methods, were considered. As depicted from Figure 1, the errors in 
computing Fcp using Eq. 16 relative to the averaged values of Eqs. 10 and 11 are 
apparently insignificant for all m values. The low relative errors support the use of Eq. 
16 over either Eq. 10 or Eq. 11. The simplicity of Eq. 16 is not the only reason for its 
advantageous use, but the ease of remembrance compared to Eqs. 10 and 11 is also a 
merit. It can also be depicted from Fig. 1 that the relative errors for different m values, 
1.852, 1.9 and 2, are not different and fall in the domain of + 2 to – 2%. It can, 
consequently, be stated that the relative error in the Fcp obtained by Eq. 16 compared to 
the averaged Fcp computed from Eqs. 10 and 11 is with in ±2 %. 
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Fig.  1. Relative error in Fcp computed by using Eq. 16. 
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Figure 2 shows the relative error in Fcp versus the number of outlets N with m 
being the parameter distinguishing the curves. As depicted by the figure, the relative 
error in estimating Fcp using Eq. 19 compared to the averaged values of Fcp obtained 
from Eqs. 10 and 11 also is insignificant, particularly for N equal to or greater than 2. 
Nevertheless, the maximum relative error in Fcp

 

 obtained from Eq. 19 was found to be in 

the vicinity of ± 3 % for N greater than unity. For N equal to one, the relative error was 
about 10.9 %. 

Figure 3 indicates that the use of Eq. 20, the simplest form of Eq. 16, may lead to 
high error in computing Fcp, specifically for N less than 15. However, the relative error 
considerably decreases for N equal to or larger than 20. Practically, the use of Eq. 20 
would lead to insignificant error because the number of sprinklers of a center-pivot 
system will generally be larger than 20. For almost all standard pivots a value of Fcp = 
0.555 (which occurs with 73 outlets) will give results that are accurate to within ± 1% 
[8]. The values of Fcp

 

 obtained from Eqs. 16, 19 and 20 for m equal to 1.852 and N equal 
to 73 are, respectively,  0.561, 0.562 and 0.555. 

The error in computing Fcp using Eq. 22 relative to the averaged values of Eqs. 10 
and 11 is shown in Fig 4. For the common m values and for N ranging from one to 
infinity, the figure indicates that the relative error is insignificant. Likely, the 
insignificant relative error supports the use of modified Christiansen, Eq. 22, over either 
Eq. 10 or Eq. 11. It is depicted from Fig. 4 that the relative errors for different m values, 
1.852, 1.9 and 2, are identically small and fall in a domain approximately ranging from + 
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Fig.  2. Relative error in Fcp computed by using Eq. 19. 
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2 to – 2 %. In general, the relative error in Fcp obtained by Eq. 22 compared to the 
averaged Fcp

To demonstrate and assess the applicability of the presented equations, well 
numerically documented examples and one field application are used. The numerical 
examples were taken from Anwar [7] and Schwab et al. [9]. The field example was 
provided by an agricultural company, which is Hail Agricultural Development Company 
(HADCO). The outputs of the three examples are summarized and shown in Table 1. In 
addition, the statistical parameters, average AVG, standard deviation STDEV and 
coefficient of variation CV, for F

 computed from Eqs. 10 and 11 is with in ± 2 %.  

cp are also provided in Table 1. The stepwise technique 
was the reference method used to compare and judge the Fcp methods. When the 
stepwise technique was not used, the method originally applied in the example was 
considered as the reference method for the comparison and judgment. The results of 
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Fig.  3. Relative error in Fcp computed by using Eq. 20. 
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Fig.  4. Relative error in Fcp computed by modified Christiansen method. 
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example 1 shown in Table 1 indicate that the highest error of Fcp estimate is expectantly 
associated with Eq. 20 and equal to -3.29 %. Surprisingly, the lowest error was 
associated with modified Christiansen method, Eq. 22 that is equal to -0.66 %. All Fcp 
methods apparently gave identical outputs as reflected by the low STDEV and CV 
values that are 0.006 and 0.012. This was anticipated because the number of outlets is 
very large, N = 67. The similar conclusion can be stated for outputs of example 2, except 
that Eq. 20 gave a high error in estimating Fcp that is attributed to small number of 
outlets, N =10. The modified Christiansen again has the lowest error in predicting Fcp. It 
is clear from Table 1 that the STDEV and CV values are higher for example 2 compared 
to those of example 1 due to the decrease in N from 67 to 10 outlets. The results of the 
field example don’t differ much from the outputs of example 1 because of the large 
value of N, which is equal to 158 outlets. The considerably small values of STDEV and 
CV values reflect the close agreement of all used Fcp methods, as depicted in Table 1. In 
other words, the minor differences among the Fcp

Table 1. Comparison of F

 values obtained from the different 
equations (Eqs. 16, 19, 20 and 22) support the validity of them all. 

cp

Numerical Example # 1 [7]: N = 67, m = 2, h

 methods using numerical and field examples 

f = 11.1 m, Fcp = 0.547 

Method Fcp ĥ (dimensionless) f Error (%)  (m) 
Stepwise 0.547 6.07 0.00 
Eqs. 10 and 11 [7] 0.541 6.01 -0.99 
Eq. 16 0.536 5.95 -1.98 
Eq. 19 0.537 5.96 -1.81 
Eq. 20 0.529 5.87 -3.29 
Modified Christiansen, Eq. 22 0.543 6.03 -0.66 

AVG = 0.539, STDEV = 0.006, CV = 0.012   

Numerical Example # 2 [9]: N = 10, m = 1.9, hf = 9.81 m, Fcp = 0.579 (average of all Fcp values). 

Schwab et al. [9] 0.540 5.30 * -6.69 
Eqs. 10 and 11[7] 0.593 5.82 2.46 
Eq. 16 0.596 5.85 2.99 
Eq. 19 0.604 5.93 4.40 
Eq. 20 0.546 5.36 -5.63 
Modified Christiansen, Eq. 22 0.592 5.81 2.29 

AVG = 0.579, STDEV = 0.028, CV = 0.048   

Field Example # 3 (HADCO): N = 158, m = 1.852, hf = 14.86 m, Fcp = 0.555 

Stepwise 0.555 8.25 0.00 
Keller & Bliesner [8] 0.553 8.22 -0.32 
Eqs. 10 and 11[7] 0.551 8.19 -0.68 
Eq. 16 0.558 8.29 0.53 
Eq. 19 0.558 8.29 0.53 
Eq. 20 0.555 8.25 0.00 
Modified Christiansen, Eq. 22 0.554 8.23 -0.19 

AVG = 0.555, STDEV = 0.003, CV = 0.015   
* It is felt that 0.54 is too low and it may was intended to use 0.59 instead. 
AVG = Average of F
STDEV = Standard deviation of F

cp 

cp 
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CV = Coefficient of variation of F
 

cp 

It should be emphasized that the presented equations can accurately be used to 
compute Fcp

 

 for flow cases of equally and variably spaced outlets. This is because the 
friction correction factor for center-pivots with constant outlets spacing was found to be 
similar to the friction correction factor for center-pivots with constant outlets discharge 
[7]. In fact, the close agreement between Eqs. 10 and 11 has also been studied. 

Estimating F from F
It is worth mentioning that Eq. 16 can easily be adjusted and accurately used to 

determine the friction correction factor F for linear-moved sprinkle systems. This can be 
achieved by equating Eqs. 16 and 22, that is: 

CP 
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(23) 

 
The term between brackets is merely the F factor and Eq. 23 can thus be written as: 
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(24) 

 
Accordingly, the exponential function for F factor is obtained and takes the 

following form: 
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The same concept can also be applied for Eqs. 19 and 20, which can, respectively, 

be written as follows: 
1
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(26) 

and 
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1
0.567

1
mF

e π

 
 =
 
 

 

 
 

(27) 

 
In addition, the F can be estimated by adjusting Eqs. 10 and 11 that can, 

respectively, be written as follows: 
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and 
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Figure 5 illustrates the relationship between F computed by the different methods 

for m equal to 1.852 versus the number of outlets N. It is obviously depicted from the 
figure that the F can be determined by Eqs. 7, 25 and 28 or 29 with insignificant errors. 
The close agreement of the curves in Fig. 5 indirectly supports the accuracy of the 
developed equations for Fcp

 
 determination. 
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Fig.  5. Comparison of F methods for flow exponent m = 0.1852. 
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Three numerical examples have been used to demonstrate the applicability of the 
equations used to estimate F. While one example was taken from Schwab et al. [9], the 
other two examples were taken from [8]. The summarized results of the three examples, 
in addition to AVG, STDEV and CV of F are presented in Table 2. The results of 
example 1 depicted in Table 2 illustrate that the highest errors of F 

 

estimate are 
associated with Eqs. 25 and 26 that equal 3.05 and 3.61 %, respectively. The lowest error 
was associated with Eqs. 28 and 29. The Christiansen method, Eq. 7, has an error of 1.66 
that is equal to the absolute error associated with Eq. 26. It can generally be stated that 
all presented F methods gave almost identical outputs as reflected by the low STDEV 
and CV values that are 0.007 and 0.019, respectively. This was anticipated because the 
number of outlets is large, N = 33. 

Table 2. Comparison of F methods using numerical examples 

Numerical Example # 1 [8]: N = 33, m = 1.852, hf = 20.04 m, F = 0.360 

Method F(dimensionless) ĥ f Error (%)  (m) 
Keller & Bliesner [8] 0.360 7.21 0.00 
Eqs. 28 and 29 0.363 7.27 0.83 
Eq. 25 0.371 7.43 3.05 
Eq. 26 0.373 7.47 3.61 
Eq. 27 0.354 7.09 -1.66 
Christiansen [5], Eq. 7 0.366 7.33 1.66 

AVG = 0.365, STDEV = 0.007, CV = 0.019   

Numerical Example # 2 [8]: N = 10, m = 1.852, hf = 86.43 m, F = 0.4023 

Stepwise 0.4023 34.77 0.00 
Keller & Bliesner [8] 0.4000 34.57 -0.57 
Eqs. 28 and 29 0.4040 34.92 0.42 
Eq. 25 0.4120 35.61 2.41 
Eq. 26 0.4180 36.13 3.90 
Eq. 27 0.3540 30.60 -12.00 
Christiansen [5], Eq. 7 0.4020 34.75 -0.07 

AVG = 0.399, STDEV = 0.023, CV = 0.057   

Numerical Example # 3 [9]: N = 72, m = 1.75, hf = 0.79 m, F = 0.38 

Schwab et al. (9) 0.380 0.300 0.00 
Eqs. 28 and 29 0.367 0.290 -3.33 
Eq. 25 0.383 0.303 1.00 
Eq. 26 0.384 0.303 1.00 
Eq. 27 0.374 0.295 -1.67 
Christiansen [5], Eq. 7 0.371 0.293 -2.33 

AVG = 0.377, STDEV = 0.007, CV = 0.018   
AVG = Average of F 
STDEV = Standard deviation of F 
CV = Coefficient of variation of F 
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The outputs of example 2 shown in Table 2 show the all F methods, except Eq. 27, 
have lead to low errors. The large relative error, -12.00 %, associated with Eq, 26 is 
because of the small N, 10 outlets. Example 3 shows that the highest relative errors are 
related to Eq. 7, Eq. 28 and 29. These high errors may be attributed to the fact that these 
methods give high errors for low m values. 

 
Conclusion 

 
The current work showed that a simple equation written in different forms can 

accurately be used to determine the friction correction factor for center-pivot systems. 
The equation and its derived forms are of the exponential type and functions of the 
velocity exponent m and the number of outlets N. With slight adjustment, it has also 
been shown that the friction correction factor can accurately be computed from the 
Christiansen F factor originally developed for equally spaced and uniformly discharging 
outlets. 

 
Numerical and field examples were used to demonstrate the applicability of the 

presented formulas. The examples outputs encourage the use of the developed equations 
to compute the friction correction factors for center-pivots and for similar type flow 
circumstances. It is expected that the proposed equations will facilitate the hydraulic 
analysis of the laterals of center-pivots and systems similarly characterized. 
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لنظم الري المحوري باستخدام صيغ مبسطة  Fحساب معامل التصحيح 
 ومعادلة كرستيانسن المعدلة

 
 عبدالرحمن علي العذبة

 قسم الهندسة الزراعية، كلية علوم الأغذية والزراعة، جامعة الملك سعود
 المملكة العربية السعودية ۱۱٤٥۱الرياض  ۲٤٦۰. ب.ص

)هـ٥/٣/١٤٢٥شر في هـ ؛ قبل للن٣٠/٣/١٤٢٤قدم للنشر في (  
 

 
لوغارتمي�ة لتق�دير معام�ل تص�حيح فاق�د -ت�م ف�ي ه�ذا البح�ث تط�وير معادل�ة أس�ية. ملخص البحث

، وت�م أيض�ا mو أس التص�رف  Nفي نظم الري المحوري، كدالة في ع�دد المخ�ارج  Fالاحتكاك 
فيه�ا ع�دد استنباط صيغتين أخريين من تلك المعادلة أكثر بساطة وملائمت�ان للح�الات الت�ي يك�ون 

كما تم في هذا البحث تعديل معادلة كرستيانسن المس�تخدمة ف�ي حس�اب معام�ل . كبير Nالمخارج 
ت�م . ، والتي تم اس�تنباطها أساس�ا للح�الات الت�ي يتن�اقص التص�رف خطي�ا م�ع المس�افةFالتصحيح 

ثل�ة عمل مقارنة بين الصيغ المطورة في هذا البحث والمعادلات التي طورت من قبل باستخدام أم
نظرية وأخرى حقلية، وتبين وجود تطابق كبي�ر ف�ي النت�ائج، وك�ان مق�دار الخط�أ ف�ي التق�دير ف�ي 

 %. ۲ ±حدود 
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