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Abstract. The F-G algorithm of Flury and Gautschi can bc used to find an orthogonal matrix B such that: 

k 
$(B) =T{detldiag(B'CiB)]/det(Cij}ll; is minimum, where C j is (Z'MZ + ex: AI) and n1 ..... , nk, are 

i = 1 
positive weights. The orthogonal matrix B can be interpreted as the matrix which brings matrices C l . 

Ck simultaneously as close to diagonality as possible. To reduce the number of operations required by F-G 
algorithm, Clarkson used a modified algorithm (MF-G) to find an orthogonal matrix B such that B'C,B 
is nearly diagonal. Both F-G and MF-G algorithm were applied to three sets of mixed model coefficient 
matrices in animal hreeding cases. Close estimate to the exact REML solutions were obtained for traits 
with low heritability (large x). One can use equal or unequal weights n l ,. ..,nk to achieve convergence 
for both algorithms. 

Introduction 

Variance component estimation can be very demanding computationally for large 
data set. Restricted maximum likelihood (REML) was derived by Patterson and 
Thompson [1] whose purpose was to eliminate the bias in maximum likelihood (ML) 
due to estimation of fixed effects. Smith and Graser [2] described an efficient 
algorithm for computing REML estimators of variance components in a class of 
mixed model. They tridiagonalized the coefficient matrix through a series of House­
holder transformations so that direct inversion of the coefficient matrix was unneces­
sary. They found that evaluation of tr(Z'MZ+ocI)-J is the most computationaly 
demanding step in the tridiagonalization procedure. However, computing this trace 
becomes a computational triviality using procedure through singular value decom-
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position. Since (Z'MZ+xI) and (D+ocI) are similar matrices where 
D=Y'(Z'MZ)Y and Y is an orthogonal matrix and, hence, tr(Z'MZ+ocI)" = 
(D+ oc l)·l So Tr(Z'MZ+ xI)·1 is simply the sum of the reciprocals of the diagonal 
clements of the matrix (D+ xl). 

In animal breeding, if the sires are related with a relationship matrix (A), Smith 
and Graser [2] suggested to redefine Z1 as ZL such that A = LL' where L is the lower 
triangular matrix obtained by applying Cholesky Decomposition to A. So 
(Z' 1MZ+ xI)s*=Z1MY where M=I - X' (X'X)·1X and S*=L·1S. 

Patterson and Thompson [I] and Thompson and Cameron [3] suggested the 
diagonalization of the coefficient matrix (Z'MZ+ x I) to reduce the CPU time 
required to obtain direct inverse in each iteration. Their basic idea was to calculate 
the inverse of (Z'MZ+ ocI) by computing Y(D+ xI)·1y' instead of direct inversion 
because (Z'MZ+ ocl)·1 = Y(D+ocI)·'Y'. Computation of Y(D+ xI)"Y' consumes 
less CPU time than direct inversion mainly because (D+ xl) is a diagonal matrix. 
Although this diagonalization procedure reduces computational time compared to 
the direct inversion approach, it still involves the calculation ofY(D+ ocI)"Y' in each 
iteration. 

Lin [4] applied singular value decomposition to the coefficient matrix of mixed 
model equations and used orthogonal matrix Y to diagonalize Z'MZ. Although 
diagonalization of Z'MZ involves extensive calculations compared with matrix 
inversion, it needs to be done only once independently of the number of iterations. 
After diagonalization, obtaining solutions and estimating variance components are 
all trivial calculations regardless of the number of iterations, whereas direct inversion 
approach needs to invert the coefficient matrix in each iteration. Thus Lin's 
technique will undoubtedly result in a substantial reduction in CPU time compared 
with the direct inversion approach or the approach of Patterson and Thompson [1]. 

Lin and Smith [5] applied FG algorithm to transform a multi trait into a unitrait 
mixed model that has equal design matrices for t traits and contains more than one 
random effect. The class of models was restricted to those in which the covariance 
matrices for all random effects including the residual can be diagonalized simultane­
ously. 

All previous studies agreed that inversion of (Z'MZ+ oc J) is a computational 
demanding in calculating solution of random effects or in computing REML 
estimators of variance components. Appropriateness of an algorithm may change 
depending on the size of the data and computer capacity. 
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The purpose of this study is to present nearly simultaneous diagonalization 
algorithms (F-G and MF-G) as proposed by [6-8] and apply them to the coefficient 
matrices of mixed models estimate REML variance components. 

Materials and Methods 

Statistical Model 

The mixed linear model that has been used in animal breeding is the following: 
y = Xb+Zu+e where 

Y is an n*l data vector of a trait. 
X is a known, fixed n*p matrix with rank=r ~ min (n,p). 
b is a fixed unknown vector. 
Z is a known incidence n*q matrix. 
u is a nonobservable q*l random vector (say sire). 
e is a n*l nonobservable random vector. 
E(u)= E( e )=0, V(u)=Ae; if k' (inverse of numerator relationship matrix) is used, 
otherwise V(u)=Ia;; V(e)=Ia: [9, p.16]' 

The mixed-model equations (MME) of Henderson [9] are: 

X'X X'Z 6 X'Y 

Z'X Z'Z+ acI ii Z'Y 

After absorption of the fixed effects, Henderson's mixed model equations will be 
(Z'MZ+acI)G =Z'MY where M=I-X'(X'X)"X 

and 

Thus G = C-'Z'MY and C = (Z'MZ+ ceI), C has the order of q sires and is difficult 

to compute if q is large. 

The REML estimates of sire and error variance components were: 
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&; = [Y'MY-u' (Z'MY)]/[N-rank(x)] 

&~ = U'U+ &;tr(Z'MZ+ocI)']/q, 

where N is the number of observations and q is the number of sires. 

F-G or MF-G algorithms can be applied to diagonalize simultaneously coefficient 
matrices of mixed model equations. The simplified procedure in calculating REML 
variance components can be summarized as foHows: 

I. Accumulate the coefficient matrices Cl, .... , Ck and PI, .. Pk, where each C can 
be one of the form ofZ'MZ, (Z'MZ+ocl) or (Z'MZ+ocA-') and each P; is in the 
form P; = Z' MY 

2. Apply F-G or MF-G algorithms on each C;, each with dimension q*q to obtain 
the orthogonal matrix B. 

3. Compute B'C;B and B'Z'MY. 

4. One can apply Gaussian elimination to get an exact solution or create a diagonal 
matrix D; = Diag (B'C; B) to compute approximate solution. 

S. Examine closeness to diagonality by 

a) comparing the diagonal elements and the eigenvalues of the transformed 
matrix. 

b) Computing Q(B)=det{Diag(B'C; B)}/det(C;) 

6. Solve for u*=(D, +ocI)-'B'Z'MY. 

7. Compute tr(Z'MA+ocI)-', u*u* and u*Z'MY_ 

F -G algorithm 

Flury and Gautschi [6] found that for given k > 1, positive definite p*p matrices 
CJ ...... ,Ck and k positive integers nl, ..... fik. the algorithm finds an orthogonal mat-

rix B such that: 

<P (B)~ [det(diag(B'CB)/det(C)]"; is minimum 
II 

i=l 

(1 ) 

The matrix B brings matrices CJ ...... , Ck simultaneously as close to diagonality as 
possible. Flury [10] showed by using the maximum likelihood estimation of common 
principal axis in k normal populations that 
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<P(B) is minimum if the following system of equations holds: 

where 

k Eil-Eij 
b, (L n --------------- 0) b, = 0, (l,j=1, ... ,p;1=j) 

i=l EilEij 

Eih = bhClbn (i = 1, ...... ,k; h=1, ...... ,p) 
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(2) 

(3) 

The F-G algorithm consists of two subroutines, called F and G respectively, which 
minimize <P(B) by iteration on two levels: on the outer level (F-level) every pair 
(bl,bi) of column vectors of the current approximation B to the solution B is rotated, 
such that equation (3) is satisfied. One iteration step of the F-algorithm consists of 
rotation of all p(p-l )12 pairs of vectors ofB. On the inner level (G-level), an ortho­
gonal, 2*2 matrix, Q which solves a two dimensional analog of (3), is found by itera­
tion. This matrix defines rotation of a pair of vectors currently being used on the F­
level, Flury and Gautschi [6, p.I71,172]. 

Clarkson [8] modified the F level of F-G algorithm and improved its performance by 
reducing the number of operations required for each pair of orthogonal column vec­
tors Bp = (b, ' b,) in B. An orthogonal matrix P is found such that: 

c -s 

P 

s c 

where c and s are the sin and eosin ofthe rotation angle (c2 + s' = I). Given c, the 
updated versions of vectors b

" 
bl are computed as Bn = B P, that is bn = cb· + sb , 

n P J J 
and b , = -sbi + cb, updated vectors. 

In Flurry and Gautschi [6] algorithm, maximum likelihood estimates for C wer~ 
found via the "G" step by use of k matrices Ti, where T, = bj , b,) C,' bj bl)' Roughly 
2kp2 operations are required to obtain all k matrices Ti for one F step. Since each F 
iteration must consider all p(p-I)12 possible pairs of vectors (b , ' bi)' the order Ofkp4 
operations are required in each F iteration in computing the T/s. This is the 
maximum number of operations required by any phase of the F-G algorithm. In MF-
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G algorithm, the k multiplication is not utilized in computing Tj,s resulting in a signif­
icant increase in performance of the algorithm, Clarkson [S,p.14S-149j F-G 
algorithm, Kp3 operations are required per F iteration to update the matrices. Tj's. 

Numerical Example 

Table 1. Example data were adapted from Schaeffer [II J. 

Herd-year-Season Sire eartage No. of progeny Total yield/tOO 

1 

2 

2 

3 

3 

4 

4 

5 

" 6 

6 

2 

3 

2 

4 

3 

5 

1 

6 

4 

6 

4 531 

3 449 

3 416 

3 411 

2 2YH 

4 624 

" 983 

2 302 

3 526 

2 321 

2 254 

4 746 

2 363 

The model used for analyzing the data contains the fixed effect of herd-year-season 
and random effect of sire. After absorbing the fixed effect and assuming ex = 15 the 
coefficient matrix is 

1) With unrelated sires (say base popUlation): 

5.1 -1.2 -1.2 -1.0 00.0 -1.7 
-1.2 3.3 -.9 -1.2 00.0 00.0 

Z'MZ+ocl= -1.2 -.9 4.5 00.0 -2.4 00.0 + 15'16 

-1.0 -1.2 00.0 3.2 00.0 -1.0 

00.0 00.0 -2.4 00.0 2.4 00.0 
-1.7 00.0 00.0 -1.0 00.0 02.7 

(Z'MY)' = (-143.35 15.80 -21.60 7S.90 18.S0 51.45 



Application of F-G . 227 

2) With related sires (say first generation): 

If the relationship matrix among sires, A is 

LOOO 0.000 0.000 0.000 0.000 0.000 
0.000 1.000 0.500 0.750 0.750 0.750 

A 0.000 0.500 1.000 0.750 0.750 0.750 
0.000 0.750 0.750 1.250 0.750 1.000 

0.000 0.750 0.750 0.750 1.250 1.000 
0.000 0.750 0.750 1.000 1.000 1.375 

Z,'MZ, ~ L'Z'MZL and L is a lower triangular matrix such that A~L'L 

5.000 -3.825 -2.208 -1.308 - .60! - 1.041 

Z,'MZ,i ,[~ -3.825 3.469 .617 .769 .875 .781 + 15"[ I> 
-2.208 .617 2.756 .934 -.475 .451 
-1.308 .7W .934 1.438 .088 .152 
- .601 .875 -.475 .088 L538 .585 
-L041 .781 .451 .152 .585 1.0!3 

F-G and MF-G algorithms were applied on different sets of coefficient matrices: 

I) Z'MZandZ;MZ, whereZ; ~ I.'Z'. 

2) (Z'MZ+x[) and (Z;MZ, +xl). 

3) (Z'MZ+x[) and (Z;MZ, +xA-I). 

These three sets were chosen as an example to demonstrate simultaneous 
diagonalization of two coefficient mixed model matrices. Moreover. each set will dif­
fer from the other in the magnitude of the diagonal and off-diagonal clements. 

Different values of x ~ 15 ,50 and 500 were used. An initial matrix B~ [ and equal 

and unequal weights were used in F-G and MF-G to compute an orthogonal matrix 
B which diagonalizes each set. The matrix B which achieves near diagonality for ex = 

15 for each set is: 
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.7063 .6302 .2524 .1520 .0417 .1247 
-.5732 .7765 -.2048 -.1234 -.0338 -.1012 

BJ = .3126 .0000 .9457 - .0673 -.0184 -.0552 
-.2035 .0000 .0000 -.9783 - .0120 -.0359 
-.0571 .0000 .0000 .0000 .9983 - .0101 
-.1739 .0000 .0000 .0000 .0000 .9848 

.7756 .5406 - .0182 -.1697 - .0865 -.2636 
-.5135 .3068 - .4031 -.3400 - .1857 -.5740 

B2 -.2694 .3601 .753 -.2439 .4057 -.0821 
-.1743 .3882 .1891 .8000 -.3562 -.1280 
-.0596 .3614 - .4764 .2772 .7274 .1815 
- .1679 .4502 -.0863 -.2816 -.3708 .7382 

.9861 .1497 .0089 .0257 .0666 -.0055 
-.0618 .3878 -.3696 - .6244 .2930 - .4832 

B, -0024 .4567 .5241 -.3064 -.6492 - .0291 
-.0554 .3872 - .3443 .6610 -.2953 -.4521 
-.1262 .4701 .5331 .2798 -.6329 - .0078 
- .0657 .4977 - .4313 -.0185 -.0206 - .7491 

Flury [10] and Flury and Gautschi [6] found the eigenvectors of the diagonaliza­
ble matrices, but B can be considered as "compromises" between the eigenvectors of 
the untransformed matrices. 

Tables 2 and 3 show that the trace, u'u and u'Z'MY of the three sets of trans­
formed matrices aTC approximate to those of exact solution (direct inversion). 
Diagonalization of (Z'MZ+xl) and (ZJMZJ +001) gave the nearest results to the 
exact solution. Dropping the off-diagonal elements from the transformed matrices 
gave approximate variance components of REML (Tables 2 and 3). One can get the 
exact solution by inverting the complete transformed matrices which is computation­
ally demanding. The difference between the approximate solution of REML and the 
exact solution could be narrowed by magnifying the diagonal clements. One can take 
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Table 2. Approximate estimates of the trace, u'u and u'Z'MY for different ratio (R= ocI) and different sets 
of matrices. 

Set Trace u'u u'Z'MY 

DI .32979 72.166 14RO.590 

First .32499 80.036 1558.700 

IS Second .32899 76.763 1525.140 

Third .32782 80.533 1563.790 

DI .11232 9.854 548.000 

First .11213 10.227 558.282 

50 Second .11229 10.070 553.923 

Third .11222 10.385 562.415 

DI .1192 .11925 60.299 

First .01192 .11974 60.456 

500 Second .01192 .11953 60.367 

Third .01192 .12001 48.903 

Dl = dircct inversion, First Sct = (Z'MZ), (Z'MZ). (Z'IMZ1), Second Set = (Z'MZ+ocl). 
(Z'IMZI+ocl). Third set = (Z'MZ+ocl),(Z'MZ+o:.Al) 

Table 3. Approximate estimates of the trace, u 'u and u 'Z'MY for different ratio (R= xA·I) and different sets 
of matrices. 

Set Trace u'u u'Z'MY 

01 .351h6 75.392 1808.720 

First .35121 81.569 1540.660 

IS Second .35121 78.075 150h.12() 

Third .38007 147.574 1624.480 

01 .11459 12.460 73S.140 

First .11455 9.999 550.488 

50 Second .11457 9.838 546.014 

Third .12845 32.043 737.552 

DI .01194 .16871 85.931 

First .01194 .11925 hO.30\ 

500 Second .01194 .IIYO] 60.240 

Third .01366 .43684 ,s5.994 

Dl = direct inversion, First Set = (Z'MZ). (Z'IMZI), Second Sct = (Z'MZ+o:.l). (Z'IMZI+o:.l), 
Third set = (Z'MZ+ocl),(Z'MZ+ocAI) 
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advantage of the large diagonal elements relative to small off-diagonal elements and 
diagonalize mixed model coefficient matrices after adding to diagonal element. Flury 
and Gautschi [6J found that iterative F-G algorithm converges faster with large 
diagonal elements. Moreover, Schaeffer [11 J found that the iterative solution of large 
mixed model converges faster with large diagonal elements, and the larger are the 
diagonals compared to off-diagonal elements in the equations, the faster will be the 
rate of convergence. 

Two criteria must be met to achieve complete diagonality and consequently find­
ing an exact solution: 
1) the diagonal elements of the transformed matrices are identical with their respec­
tive eigenvalues. Comparison of diagonal elements and their corresponding eigen­
values in the numerical example was given in Table 4 and 5. Diagonal elements and 
the eigenvalues became close to each other as increased to 500. The agreement of 
diagonal elements with the corresponding eigenvalues needs to be checked using 
likelihood ratio test as suggested by [IOJ. If the diagonal elements and their corres­
ponding eigenvalues differ significantly then approximate estimation should be con~ 
sidered cautiously. 

2) O(B) = I where 

O(B) = 
I Diag (B'C,B) I 

le,1 

I( diag(B'C,B))1 = the product of all diagonal elements of the matrix inside the paren­

thesis. 

Q( 8» J if the off~diagonal elements deviate from zero. Table 6 shows estimates 
of O(B) for different sets of simultaneous transformation. As ex. increased to SOO. 
O(B) become close to I. Diagonalizing Z'MZ and Z', MZ, gave large values of 
Q(8), and this is mainly due to the very small determinant of both matrices, 
det(Z'MZ)=2.5941E-I3, and det(Z',MZ,)=-2.1111IE-IS. 

Flury and Gautsehi [6 J showed that two minima of equation (I) arc expected if 

the matrix has small determinant, i.e. if the essentricity ( !J,m,lx ,where u is the cigcn­
!J,min 

value) is high. 

One can easily find that sums of squares of the off-diagonals for coefficient mat­
rices arc less after applying F-G and mf~G algorithms. Moreover, in terms of ahso-
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Table 4. Diagonal elements (DE) and eigenvalues (EV) for different sets of coefficient matrices and for 
different ratio 

R~ lSI R ~ 501 R~5001 

Set'! DE EV DE EV DE EV 

20.73H 22.016 55.73H 57.016 505.73X 507.016 

17.841 17.916 52.841 52.916 502.H4 I 502.916 

First 19.388 20.844 54.388 55.855 504.388 505.H43 

IH.298 17.916 53.298 54.35X 503.298 504.358 

17 .499 16.067 52.499 52.370 502.499 501.067 

17 A37 15.000 52.437 50.000 502.437 500.000 

21.017 22.016 56.002 57.012 505.973 507.052 

15.157 15.157 50.166 49.998 .100.156 499.973 

Second 21.269 20.842 56.267 55.843 605.325 505.842 

19.393 19.35R 54.389 54.355 504.385 504.349 

16.112 16.067 51.1 10 51. 063 501.0l.n 501.039 

18.253 18.253 53.253 52.915 503.290 502.039 

20.489 21.666 55.302 57.014 505.141 507.007 

15.460 15.062 55.S42 55.H46 505.824 505.R49 

Third 16.674 16.008 54.652 54.362 504.643 504.369 

19A06 19.406 50.Xlh 49.999 50UI5S 500 .(125 

21.054 21.100 51.723 51.067 501.744 501.065 

IR.074 17.914 52.866 52.915 502.X21 502.919 

First Set = (Z'MZ), (Z'!MZ1), Second Set ~ (Z'MZ+ocl). (Z'I+ocI), (Z'IMZ!+xl) Third Sct 

(Z'MZ+ exI), (Z'MZ+ xA"!). 

TableS.Diagonal elements (DE) and eigenvalues (EV) for different sets of coefficient matrices and for 
different ratio 

R = 15A"! R = 50A"1 R = 500A" I 

Set DE EV DE EV DE EV 

24.590 24.625 59.599 59.625 509.590 509.625 

15.374 15.00U 50.374 50.002 50lU74 500.000 

First 17.038 IH.014 52.03R 53.014 502.038 503.014 

16.061 16.009 51.061 51.009 501.061 501.009 

16.470 16.251 51.470 51.415 501.470 501.251 

15.783 15.415 50.783 5UAI5 500.783 5UO.415 
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TableS. Diagonal elements (DE) and eigenvalues (EV) for ditTerent sets of coefficient matrices and for dif~ 

fereDt ratio 

R= 15A1 R=50A1 R ~ 500A' 

Set DE EV DE EV DE EV 

24.542 24.623 59.552 59.622 509.538 509.600 

15.660 15.416 50.645 49.996 500.622 499.600 

Second 18.010 18.014 53.006 53.010 503.061 503.068 

15.829 16.252 50.823 51.252 500.820 501.271 

15.581 14.998 50.581 50.414 500.562 500.383 

15.693 16.010 50.695 51.006 500.730 501.026 

20.360 20.318 55.202 55.202 505.130 505.130 

4.217 4.215 105.848 105.842 1005.760 1005.760 

Third 91.0lH) 91.032 289.898 289.899 2856.070 2856.070 

34.700 34.8()() 12.734 12.473 ) )6.517 116.517 

32.046 31.944 101.731 101.731 1001.740 1001.740 

43.892 43.906 134.357 134.364 1317.420 1317.420 

First Set = (Z'MZ), (Z'IMZI), Second Set = (Z'MZ+I), (Z'I+OCJ), (Z'IMZI+ocI) Third Set = 

(Z'MZ+ocl). (Z'MZ+ocA'). 

Table 6. Estimates of Q(8) for ditTerent sets of coefficient matrices and for different ratio 

Set 15 50 500 

First very large very large very large 

Second 1.0)1265 1.(0)335 1.000000 

Third 1.0178lH) 1.002850 J.(XlO061 

First Set = (Z'MZ), (Z'lMZ1), Second Set = (Z'MZ+ocJ), (Z; MZ, +0:1), Third Set = (Z'MZ+cx:I), 

(Z'MZ+ocA'). 

lute value each diagonal entry is larger than the sum of off-diagonal entries in that 
row I.e. 

" 
la"l> L la'jl for j=1.2 ........ , n. 

j=l 

At King Saud University IBM computer. the CPU time is combined with output 
machine time, so it is difficult to define CPU time used by either algorithm for 
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diagonalizing two (6*6) matrices. However, Flury and Constantine [7] diagonalized 
two (6*6) matrices on MY 20 computer for MF-G algorithm with CPU time .070 sec­
onds this compared with .101 seconds required for MF-G algorithm. 

Conclusion 

F-G and MF-G algorithms give approximate estimates of variance component 
of REML. Both algorithms gave the same transformation matrix (B). Equal or 
unequal weights nl, ...... , nk can be used to achieve convergence for both algorithms 
and minimize the deviation from diagonality. Close estimate to the exact solution can 
be obtained for traits with low heritability (i.e large 0<) such as reproduction and fit­
ness. Saving in CPU time by using MF-G algorithm becomes more important as the 
number of sires, animals in animal model, and traits increases. 

F-G algorithm Adopted from Flury and Gautschi [I] 

Let <I>(B) = <I>(B' CIB, ...... ,B'CkB;np ...... ,nk), the F-G algorithm yields a con­
verging sequence of orthogonal matrices BO ,BI, ...... such that <I>(Bf+ f) ";<I>(Bf). The 
algorithm proceeds as follow: 

F algorithm 

Step Fo Define B = (b p ...... , b
p

) EO(P) as an initial apporoximation to the 
orthogonal matrix minimizing <1>, e.g. B <----1, put F<------O. 

Step FI: Put B(f) <-----B and f<-----f+]' 

Step F2: Repeat steps F'I to F" for all pairs (I,j), I ,,; 1 ,,;j <p 

Step F2. 1: put Hp" <----- (b p bj) and 

T 1<----

The Ti are p.d.s. and (i = 1, ...... , k). 

Step F2.,: Perform the G algorithm on (TI' ...... , Tk) to get an 
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[

Cos ex -Sin",] 
orthogonal matrix 0 = . 

SIn oc cos oc 

Step F, _,: Put H'(p'2)=(b' I,b'j) <------ HO (This is an orthogonal rotation of the 
two columns of H by an angle x ). 

Step F,_4: In the matrix B, replace columns hi and bj by b' I and b'J' respectively and 
call the new matrix again B. 

Step F ,: !ffor some ~>O,<I>(BI-lht><Bf) > E holds stop. Otherwise start the next iter­
ation stop at F I' 

G-algorithm 

This algorithm solves the equation: 

k 

ql [L 
i=l 

kd ~ ki2 

nl ---------------- T, 142 = 0, where 

kij ki2 

(I) 

TI, ...... ,Tk are fixed p.d.s. 2'2 matrices, nl>O arc fixed constants, klJ = q'jTiqj (i = 
I, ...... ,k), j=I,2) and 0 = (ql,Q2) is an orthogonal 2'2 matrix. The iteration of the 
sequence of orthogonal matrices QO ,QI, ...... , converging to a solution of the 
algorithm proceeds as follows: 

Step Go: Define 0(2*2) as an initial approximation to the solution on (I). 

0<--------12 put g<--------O 

Step Gl! Put O(g)<-------O and g<-------g+ I 

Step G2! Compute k'J using the algorithm 

k 

i=l 

kil - k1j 

n, --------------- T, 

kilk ij 
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Step GJ: Compute normalized eigenvectors ofT. In Q ~ (ql,q2), Put ql<------ first 
eigenvector ofT,q2 <------ second eigenvector ofT. 

Step G4: If II Qq-I -Q II < E stop. Otherwise start the next iteration step. 

MF -G algorithm adopted from Clarkson [2] 

1. Compute initial matrices 0] = B'oCjBo (Bo matrix of initial estimates. 

2. For column vectors (bl,b;) of B take the elements of T J as the corresponding 
diagonal and off-diagonal elements of Qi. In other words till = qijj , ti22 = qill ' til2 = 

qiji and ti2l = qiji 

3. Update each matrix Q; from the values c and s computed during the G step as 

" t + 2 t' + 2t' q ijj=c2 ill CS 112 S 122 

q2i11 = s2till - 2cstjI2 + c2ti22 

q\1 = CS (ti22 - till) + (c2 S2) til2 

qnij1 = qij 1 

qn]m] = sqiml + sqimj 

qnim] = sqiml + sqimj 

qnimj = qimj 

qllilm = qiml 

where m = 1, ...... , p,m=l,m=j 

4. Update the vectors (b"b l) as discussed above using tangent. 

5. Go to step 2 with a new pair (j,l) of indices for vectors (b),b l). 
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