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Abstract. The F-G algorithm of Flury and Gautschi can be used to find an orthogonal matrix B such that:

k
(B} = T {det]diag(B'CiB))/det(Ci]}" is minimum, where C,is (Z'MZ + < Ay andn, ......, n,, are

i=1

positive weights. The orthogonal mairix B can be interpreted as the matrix which brings matrices C, ...,
C, simultanecusly as close to diagonality as possible. To reduce the number of eperations required by F-G
algorithm, Clarksen used a modified algorithm (MF-G) to find an orthogonal matrix B such that B'CB
is nearly diagonal. Both F-G and MF-G algorithm were applied to three sets of mixed model coefficient
matrices in animal breeding cases. Close estimate to the exact REML solutions were obtained for traits
with low heritability (large «}. One can use equal or unequal weightsn,, ...... .n, to achieve convergence
for both algorithms.

Introduction

Variance component estimation can be very demanding computationally for large
data set. Restricted maximum likelihood (REML) was derived by Patterson and
Thompson [1] whose purpose was to eliminate the bias in maximum likelihood (ML)
due to estimation of fixed effects. Smith and Graser [2] described an efficient
algorithm for computing REML estimators of variance components in a class of
mixed model. They tridiagonalized the coefficient matrix through a series of House-
holder transformations so that direct inversion of the coefficient matrix was unneces-
sary. They found that evaluation of tr(Z'MZ+=I)! is the most computationaly
demanding step in the tridiagonalization procedure. However, computing this trace
becomes a computational triviality using procedure through singular value decom-
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position.  Since {(Z'MZ+ol) and (D+ecl) are similar matrices where
D=V (Z'MZ)V and V is an orthogonal matrix and, hence, tr(Z'MZ+=I)! =
(D+=<Iy!. So Tr(Z'MZ+=1I)" is simply the sum of the reciprocals of the diagonal
clements of the matrix (D4 oc]),

In animal breeding, if the sires are relatcd with a relationship matrix {A), Smith
and Graser [2] suggested to redefine Z, as ZL such that A = LL' where L is the lower
triangular matrix obtaincd by applying Cholesky Dccomposition to A. So
(Z' MZ+x)s*=7Z MY where M=1-X' (X’X)'X and s*=1L"1s,

Patterson and Thompson [I] and Thompson and Cameron [3] suggested the
diagonalization of the coefficient matrix (Z'MZ+«1) to reduce the CPU time
required to obtain direct inverse in each iteration. Their basic idea was to calculate
the inverse of (Z'MZ+ =) by computing V(D + 1) 'V’ instead of direct inversion
because (Z'MZ+«I)! = V(D+«I)'V'. Computation of V(D+=I)!V' consumes
less CPU time than direct inversion mainly because (D+ ocl) is a diagonal matrix.
Although this diagonalization procedure reduces computational time compared to
the direct inversion approach, it still involves the calculation of V(D+o<I)-'V' in each
iteration.

Lin [4] applied singular value decomposition to the coefficient matrix of mixed
model equations and used orthogonal matrix V to diagonalize Z'MZ. Although
diagonalization of Z'MZ involves extensive calculations compared with matrix
inversion, it needs to be done only once independently of the number of iterations.
After diagonalization, obtaining solutions and estimating variance components are
all trivial calculations regardless of the number of iterations, whereas direct inversion
approach needs to invert the coefficient matrix in each iteration. Thus Lin’s
technique will undoubtedly result in a substantial reduction in CPU time compared
with the direct inversion approach or the approach of Patterson and Thompson [1].

Lin and Smith [5] applied FG algorithm to transform a multitrait into a unitrait
mixed model that has equal design matrices for t traits and contains more than one
random effect, The class of models was restricted to those in which the covariance
matrices for all random effects inciuding the residual can be diagonalized simultane-
ously.

All previous studies agreed that inversion of (Z'MZ+«<1) is a computational
demanding in calculating solution of random eftects or in computing REML
estimators of variance components. Appropriateness of an algorithm may change
depending on the size of the data and computer capacity.
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The purposc of this study is to present nearly simultaneous diagonalization
algorithms (F-G and MF-G) as proposed by [6-8] and apply them to the cocfficient
matrices of mixced models estimate REML variance components.

Materials and Methods

Statistical Model

The mixcd linear modcl that has been used in animal breeding is the following:
y = Xb+Zu+c where

is an n*1 data vector of a trait.

is a known, fixed n”p matrix with rank=r < min (n,p).

is a fixed unknown vector.

is a known incidence n*q matrix.

is a nonobservable q*1 random vector (say sire).

is a n*1 nonobservable random vector.

E(u)=E(e)=0, V(u)=Ae] if A"! (inverse of numerator relationship matrix) is used.
otherwise V(u)=1Io2; V{¢)=Ic [9, p.16].

&S NT X<

The mixcd-model equations {MME) of Henderson [9] are:

=
N
-

2'X 2L+ =]

After absorption of the fixed effects, Henderson’s mixed model equations will be
(Z’MZ+>Di =Z'MY where M=1-X'(X'X)'X

g

A
a

and o=
n2

OU

Thus & = C'Z'MY and C = (Z'MZ+«=I), C has the order of g sires and is difficult
to compute if q is large.

The REML estimates of sire and error variance components were:
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62 = [Y'MY—u' (Z’'MY))/[N-rank(x)]

62 = u'u+ 67 tr (Z’MZ+1)! |/qg,

where N is the number of observations and g is the number of sires.
F-G or MF-G algorithms can be applied to diagonalize simultaneously coefficient

matrices of mixed model equations. The simplified procedure in calculating REML
variance components can be summarized as follows:

I.  Accumulate the coefficient matrices Ci1, ..., Ck and Pi, .. Pk, where cach C can
be one of the form of Z'MZ, (Z'MZ+«I) or (Z'MZ+« A ') and each Pisin the
form P, = Z' MY

2. Apply F-G or MF-G algorithms on each C,, each with dimension q*q to obtain
the orthogonal matrix B,

3. Compute B'C.Band B'’Z'MY.

4. One can apply Gaussian elimination to get an exact solution or create a diagonal
matrix D; = Diag (B'C, B) to compute approximate solution.

5.  Examine closeness to diagonality by

a) comparing the diagonal elements and the eigenvalues of the transformed
matrix.

b) Computing Q(B)=det{Diag(B’'C, B)}/det(C,)
6. Solve foru*=(D,+=<I)1B'Z'MY.
7. Compute tr(Z’MA+oI)! u*u* and w*Z'MY.

F-G algorithm

Flury and Gautschi [6] found that for given k > 1, positive definite p*p matrices
Cr...... ,Cx and k positive integers ni,.....nk. the algorithm finds an orthogonal mat-

rix B such that:

® (B) i [det(diag(B’'CiB)/det(Ci)]"; is minimum (1)

i=1

The matrix B brings matrices Cit ...... , Ck simultaneously as close to diagonality as
possible. Flury [10] showed by using the maximum likelihood estimation of common
principal axis in k normal populations that



Application of F-G ... 295

$(B) is minimum if the following system of equations holds:

ko By - E;
by () e C)by =0, (Lj=L, ....p;1=j) (2)
i=1 EyE;
where
Eh=biCibn(i=1, ...... kih=1, ... .p) 3

The F-G algorithm consists of two subroutines, called F and G respectively, which
minimize ®(B) by iteration on two levels: on the outer level (F-level) every pair
(b, ,bj) of column vectors of the current approximation B to the solution B is rotated,
such that equation (3) is satisfied. One iteration step of the F-aigorithm consists of
rotation of all p(p—1)/2 pairs of vectors of B. On the inner level (G-level), an ortho-
gonal, 2*2 matrix, Q which solves a two dimensional analog of (3), is found by itera-
tion. This matrix defines rotation of a pair of vectors currently being used on the F-
level, Flury and Gautschi [6, p.171,172].

Clarkson [8] modified the F level of F-G algorithm and improved its performance by
reducing the number of operations required for each pair of orthogonal column vec-
tors B, = (b, , b)) in B. An orthogonal matrix P is found such that:

where ¢ and s are the sin and cosin of the rotation angle (¢ + 52 = 1). Given c, the
updatfd versions of vectors bj, b, 41 computed as B" = Bp P, that is b;-' = cbj- + sb,
and by = —sb, + ¢b, updated vectors.

In Flurry and Gautschi [6] algorithm, maximum likelihood estimates for C were
found via the “G” step by use of k matrices Ti, where T, = b, , b,) C;" b, b;). Roughly
2kp? operations are required to obtain all k matrices T, for one F step. Since each F
iteration must consider all p(p-1)/2 possible pairs of vectors (b, , b,), the order of kp*
operations are required in each F iteration in computing the T,'s. This is the
maximum number of operations required by any phase of the F-G algorithm. In MF-
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G algorithm, the k multiplication is not utilized in computing T,,s resulting in a signif-
icant increase in performance of the algorithm, Clarkson [8,p.148-149] F-G
algorithm, KP? operations are required per F iteration to update the matrices. T\'s.

Numerical Ex

Table 1. Example data were adapted from Schaeffer [11].

ample

Herd-year-Season

Sire eartage

No. of progeny

Total yield/100

L " - " N S T o8 T

[= N = e

= T = L T S I N N R R

B BB e B D R R R e

531
449
416
411
298
624
983
302
526
321
254
746
363

The model used for analyzing the data contains the fixed effect of herd-year-season
and random effect of sire. After absorbing the fixed effect and assuming = = 15 the
coefficient matrix is

1) With unrelated sires (say base population):

Z'MZ Aol =

=
5.1

-1.2
-1.2
~1.0
00.0
-1.7

L
(Z'MY)’

-1.2
33
-.9

—1.2

00.0

00.0

-1.2
-9
4.5

00.0

—2.4

00.0

-1.0
-1.2
00.0

3.2
00.0
-1.0

00.0
00.0
2.4
00.0

2.4
00.0

-1.7
00.0
00.0
-1.0
00.0
2.7

= (—143.35 [5.80 —21.60 78.90 18.80 51.45

+15%1,
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2) With related sires (say first generation):

If the relationship matrix among sires, A is

1.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.500 0.750 0.750 0.750
A = 1.000 0.500 1.000 0.750 0.750 0.750
0.000 0.750 0.750 1.250 0.750 1.000
0.000 0.750 0.750 0.750 1.250 1.000
L (.000 0.750 0.750 1.000 1.000 1.275

Z,'MZ, = L'Z'MZL and L is a lower triangular matrix such that A=L'L

5.000 3825 2208 —-1308 —.o601 —1.041
Z/MZ+ <I=| —3.825 3.469 617 769 875 781 +15%T,
—2.208 617 2.756 934 — 475 451
—1.308 769 934 1.438 088 152
— .601 .875 —.475 088 1.538 585
—1.041 781 .451 152 585 1.013

F-G and MF-G algorithms were applicd on different sets of coefficient matrices:

[} Z'MZ and Z\MZ, where 7, = 17",
2) (ZMZ+=1) and (ZMZ +ol).
3) (Z'MZ+=1)  and (Z MZ, +xA-1).

These three sets were chosen as an example to demonstrate simultaneous
diagonalization of two coefficient mixed model matrices. Moreover. each set will dif-
fer from the other in the magnitude of the diagonal and off-diagonal clements,

Ditferent values of > =15,50 and 500 were used. Aninitial matrix B=Tand equal
and unequal weights were used in F-G and MF-G to compute an orthogonal matrix
B which diagonalizes each set. The matrix B which achieves near diagonality for = =
15 for each set is:
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7063
—.5732
B, = 3126
—~.2035
—.0571
—.1739

7756
—.5135
B, = | —.2694
1743
—.0596
1679

9861
- 0618
B, = | -.0024
0554
—.1262
— 0657

.6302
7765
.0000
.0000
.0000
0000

5406
3068
3601
3882
614
4502

1497
3878
4567
3872
4701
4977

A.K. Ahmed Ali

2524
—.2048
9457
0000
0000
.0000

-.0182
—.4031
753
1891
—.4764
—.0863

0089
—.3696
5241
—.3443
5331
—.4313

1520 .0417 1247
—.1234 -—-.0338 —.1012
—.0673 —.0184 —.0552
-.9783 —.0120 -—.0359

.0000 9983 —.0101

0000 .0000 9848

il

~.1697 - .0865 —.2636
~ 3400  —-.1857 —.5740
~.2439 4057 —.0821
8000 — 3562 —.1280
2772 72741815
—.2816  —.3708 7382

0257 0666 —.0055
—.6244 2930 —.4832
—.3064 —.6492 —.0291

6610 — 2053 —.452]

2798 —.6329 - 0078
—.0185 —.0206 —.7491

Flury [10] and Flury and Gautschi [6] found the eigenvectors of the diagonaliza-
ble matrices, but B can be considered as “compromises” between the eigenvectors of

the untransformed matrices.

Tables 2 and 3 show that the trace, u'u and u'Z'MY of the three sets of trans-
formed matrices are approximate to those of exact solution (direct inversion).
Diagonalization of (Z'MZ+ 1) and (Z,MZ, +«I) gave the nearest results to the
cxact solution. Dropping the off-diagonal elements from the transformed matrices
gave approximate variance components of REML (Tables 2 and 3). One can get the
exact solution by inverting the compiete transformed matrices which is computation-
ally demanding. The difference between the approximate solution of REML and the
exact solution could be narrowed by magnifying the diagonal ¢lements. One can take
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Table 2. Approximate estimates of the trace, u'u and u’Z’MY for different ratio (R= =) and different sets
of matrices.

o Set Trace u'v wZ'MY
D1 32979 72166 1480.590

First .32499 50.036 155R8.700

15 Second 32899 76.763 1525.140
Third 32782 80.533 1563.790

DI 11232 9.854 548,000

First 11213 10.227 558.282

50 Scecond 11229 10.070 553,923
Third 11222 10,383 562.415

DI 1192 11925 60.299

First 01192 11974 61,456

500 Second 01192 (11953 60).367
Third 01192 12001 48903

D1 = dircct inversion, First Set = (Z'MZ), (Z'MZ), {(Z"1MZ1), Sccond Set = (Z'MZ.+=1),
(7 1MZ1+ <1}, Third set = (Z'MZ+ o) (Z'MZ+= A1)

Table 3. Approximate estimates of the trace, u’u and u’Z’MY for differentratio (R == A"') and different sets
of matrices.

x Set Trace u'u u'Z'MY
DI 35166 75.392 1808.720

First 35121 81.569 1540).660

15 Sceond 35121 78.075 1506120
Third LAROWT 147.574 1624 480

DI 11459 12.460 TIR. 140

First 11455 9.999 5500488

50 Second 11457 9. 838 546.014
Third 12845 32.043 737.552

D1 01194 16871 85.931

First 01194 11925 64).301

500 Second 01194 11903 6().249
Third 01366 .43684 85.994

DI = direct inversion, First Set = (Z'MZ), (Z"1MZ1), Second Sct = (Z'MZ+=1), (Z'1MZi+1),
Third set = (Z'MZ+x[),(Z'MZ+x A1)
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advantage of the large diagonal elements relative to small off-diagonal elements and
diagonalize mixed model coefficient matrices after adding to diagonal element. Flury
and Gautschi [6] found that iterative F-G algorithm converges faster with large
diagonal elements. Moreover, Schaeffer | 11] found that the itcrative solution of large
mixed model converges faster with large diagonal elements, and the larger are the
diagonals compared to off-diagonal elements in the equations, the faster will be the
ratc of convergence.

Two criteria must be met to achieve complete diagonality and consequently find-
ing an exact solution:
1) the diagonal elements of the transformed matrices are identical with their respec-
tive eigenvalues. Comparison of diagonal elements and their corresponding eigen-
values in the numerical example was given in Table 4 and 5. Diagonal elements and
the eigenvalues became close to each other as increased to 500. The agreement of
diagonal elements with the corresponding eigenvalues needs to be checked using
likelihood ratio test as suggested by [10]. If the diagonal elements and their corres-
ponding cigenvalues differ significantly then approximate estimation should be con-
sidered cautiously.

2) O(B) =1 where

| Diag (B'CB) |
QB)= ——

|G

|{diag(B3'C,B))| = the product of all diagonal elements of the matrix inside the paren-
thesis.

Q(B)>1 if the off-diagonal elements deviate from zero, Table 6 shows estimates
of Q(B) for different scts of simultaneous transformation. As > increased to 5(6).
Q(B) become close to 1. Diagonalizing Z'MZ and Z'| MZ, gave large values of
Q(B), and this is mainly due to the very small determinant of both matrices,
det(7'MZ)=2.5941F-13, and det(Z' MZ,}=—2.1110E-15.

Flury and Gautschi {6] showed that two minima of equation (1) are expected if
the matrix has small determinant, i.¢. if the essentricity ( M where uis the cigen-

ValUE) 15 hlgh Mmin

One can easily find that sums of squares of the off-diagonals for coefficient mat-
rices arc less after applying F-G and mf-G algorithms. Morcover, in terms of abso-
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Table 4. Diagonal elements (DE) and eigenvalues (EV) for different sets of coefficient matrices and for
different ratio

R=15] R =501 R=5001
Set! DE EV DE EV DE EV
200738 22.016 55.738 57.016 505.738 507.016
17.841 17.916 52.841 52.916 502.841 502.916
First 19,388 20.844 54,388 35.855 504.388 505.843
18.298 17.916 53.208 54.358 503.298 504.358
17.499 16.067 52.499 52.370 502.499 501.067
17.437 15.000 52.437 50.000 502.437 300,000
21.017 22.016 56.002 57.012 505.973 507.052
15.157 15.157 50.166 49.998 500. 156 499.973
Second 21.269 20.842 56.267 55.843 605.325 505.842
19.393 19.358 54.389 54.355 504.385 504.349
16.112 16.067 31110 51.063 501.091 501.039
18.253 18.253 53.253 32.915 503.290 502.039
20.489 21.666 55.302 57.014 505.141 S07.007
15.460 15.062 55.842 55.846 505.824 505.849
Third 16.674 16.008 54.652 54,362 504.643 504.369
19.406 19.406 50.816 49999 501.058 500.023
21.054 21.100 51.723 51.067 501.744 501.065
18.074 17.914 52.866 52.915 502.821 502.919

First Set = (Z'MZ), (Z:1MZ1), Second Set = (Z'MZ+ocl), (Z'1+ D), (Z'"MZi1+3!) Third Sct =
(Z'MZ+ 1), (Z'MZ.+ =A™,

Table §. Diagonal elements (DE) and eigenvalues (EV) for different sets of coefficient matrices and for
different ratio

R=15A" R =50A"1 R =500A"
Set DE Ev DE EV DE EV
24.590 24,6235 59.599 59.625 309.590 509.625
15.374 15.000 50.374 50.002 500.374 500,000
First 17.038 18.014 52.038 53.014 502.038 503.014
16.061 16.009 51.061 51.009 301.061 5601.009
16.470 16.251 531.470 51.415 501.470 501.251

15.783 15.415 50.783 50.415 500.783 500,415
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Table5. Diagonal elements (DE) and eigenvalues (EV) for different sets of coefficient matrices and for dif-

ferent ratio

R=15A" R =50A"" R = 500A"

Set DE EV DE EV DE EV
24.542 24.623 59.552 59.622 509,538 509.600
15.660 15.416 50.645 49.996 500.622 499,600
Second 18.010 18.014 53.006 53.010 503.061 503.068
15.829 16.252 50.823 51.252 500.820 501.271
15.581 14.998 50.581 50.414 500.562 500.383
15.693 16.010 50.695 51.006 500,730 501.026
20.360 20.318 55.202 55.202 505.130 505.130
4217 4215 105.848 105.842 1005.760 1005,760
Third 91.000 91.032 289,898 289.899 2856.070 2856.070
34.700 34,800 12.734 12.473 116.517 116.517
32.046 31.944 101.731 101.731 1001,740 1001.740
43.892 43.906 134.357 134 364 1317.420 1317.420

First Set = (Z'MZ), (Z'MZ1), Second Set = (Z'MZ+I), (Z'1+I), (Z'1MZi+21) Third Set =
(Z'MZ+x1), (Z'MZ+ =AY,

Table 6. Estimates of Q(B) for different sets of coefficient matrices and for different ratio

Set 15 50 500

First very large very large very large
Second 1.011265 1.001335 1.000000
Third 1.017800 1.002850 1000061

First Set = (Z'MZ), (Z',MZ,), Second Set = (Z'MZ+x1), (Z; MZ, +=1), Third Set = (Z'MZ+x1),
(ZMZ+2A).

lute value each diagonal entry is larger than the sum of off-diagonal entries in that
rowi.e.

n
lagl > ) Jay| forj=12,....... , I
j=1
At King Saud University IBM computer, the CPU time is combined with output
machine time, so it is difficult to define CPU time used by either algorithm for
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diagonalizing two (6*6) matrices. However, Flury and Constantine [7] diagonalized
two (6%6) matrices on MV 20 computer for MF-G algorithm with CPU time .07} scc-
onds this compared with .101 seconds required for MF-G algorithm.

Conclusion

F-G and MF-G algorithms give approximate estimates of variance component
of REML. Both algorithms gave th¢ same transformation matrix (B). Equal or
unequal weightsni, ...... , ik can be used to achieve convergence for both algorithms
and minimize the deviation from diagonality. Closc estimate to the exact solution can
be obtained for traits with low heritability (i.e large o) such as reproduction and fit-
ness, Saving in CPU time by using MF-G algorithm becomes more important as the
number of sires, animals in animal model, and traits increases.

F-G algorithm Adopted from Flury and Gautschi [1}

Let ®(B) = ®(B' C,B, ...... JB'CBmn, ... .1, ), the F-G algorithm yields a con-
verging sequence of orthogonal matrices B, B!, ...... such that ®(B*!) =@ (BY). The
algorithm proceeds as follow:

F algorithm

Step Fo Decfine B = (b, ...... , by) €0(P) as an initial apporoximation to the
orthogonal matrix minimizing ®, e.g. B <----1, put F<{------ 0.

Step F,: Put B®) <--——-B and f<-----f+1

Step F,: Repeat steps F,, to F,, for all pairs (1)), 1 = 1 j <p

Step F, ;: put H ,, <----- (b,, bj) and

H' Cb, b Ch,
T, <<-mv-

b’jCl-b, b’J—Cl-bJ-J
The T;are p.ds.and(i=1,...... k).

Step F, ,: Perform the G algorithm on (T, ...... ,T) to get an
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Cos =« —sinoc
orthogonal matrix Q =

5in o cOs o€

Step F, 3z Put H*(p*2)=(b"|,b")) <o HQ {This is an orthogonal rotation of the
two cotumns of H by an angle = ),

Step F, ;: In the matrix B, replace columns by and b; by b* and b*,, respectively and
call the new matrix again B.

Step F,: If for some € >0,®(B"-®<Bf) > ¢ holds stop. Otherwisc start the next iter-
ation stop at F.

G-algorithm

This algorithm solves the equation:

k i2
NTOIIE, R T,] g, = (. where (1
=1 K ki
Theeeorer Tk are tixed p.d.s. 2*2 matrices, ni>{} arc fixed constants, kij = q'jTiqj (i =
L...... k), j=1,2) and O = {q1,q2) is an orthogonal 2*2 matrix. The iteration of the
sequence of orthogonal matrices Q9,Q7,...... , converging to a solution of the

algorithm procecds as follows:

Step Go: Define Q{2*2) as an initial approximation to the solution on (1).

Step Gi1: Put Q(g)<<-—-—- Q and g<------- g+1

Step G2: Compute kij using the algorithm
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Step G3: Compute normalized eigenvectors of T. In Q = (q1,q2), Put gq1<t-—--- first
eigenvector of T,q2 <(------ second eigenvector of T.

Step Ga: If || Q9! —Q || < ¢ stop. Otherwisc start the next iteration step.

MF-G algorithin adopted from Clarkson [2]
1. Compute initial matrices Q, = B’ C B, (B, matrix of initial estimates.

2. For column vectors (b;,b)) of B take the elements of T, as the corresponding
diagonal and off-diagonal elements of Qi. In other words t;;; = gy, tiy; = Qyy , 42 =

qQ;;; and ty; = gy
3. Update each matrix Qi from the values ¢ and s computed during the G step as

Qg Gy T 2estip, + s2tiy,

Qi = 8%y — 2oty + 2y,

q% = ¢s (tiy = ) + (€2 $7) 5
Q" = qijl

T e

q iml = Sim + S’qlm_}

q"imj = iy
11m qlml
wherem =1,...... , p.m=1m=j

4. Update the vectors (hj,bl) as discussed above using tangent.

5. Go tostep 2 with a new pair (§.1) of indices for vectors (b;,b,).
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