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Abstract. Carbaryl, parathion, and diazinon bicassays were conducted in field through fourteen sequen-
tial generations of house fly, Musca domestica {L..) to trace monooxygenase level and role in the detoxifi-
cation process. Parathion was more toxic to susceptible (8) strain {LC0.013ug/vial) than diazinon (LCy,
0.33ug/vial). Curbaryl showed the lowest toxicity against the flics (I.Cg, 35ep/vial). The toxicities of car-
baryl, parathion, and diazinon against § strains in relation to the field strains bave been increased by 11,
45, and 346-folds respectively. Pretreatment of inseets with piperonyl butoxide (Pb) inhibited the
monooxygenase system, depriving the insects of a key defense mechanism against the three insceticides
uscd in this study. Almost similar percent dependency values were obtained for the ficld strains (64, 62,
and 1% ) and S strains {71, 60, and 53% ) on monoxygenascs for detoxification of carbaryl, parathion, and
diazinon respectively.

Introduction

Tolerance of insects to pesticides is a very known phenomenon. It can finally be due
to any of several factors acting alone or in combination. In many cases, detoxification
of insecticides by the metabolic action of enzymes is a major factor in insecticide
tolerance. There is evidence, however, that monooxygenase detoxification
mechanism is of far greater importance than others | 1].

Biological assays are recommended for the detection and confirmation of insce-
ticide tolerance or resistance. They can be conducted with insecticides and synergists
to estimatc relative detoxification role of the various enzyme systems. Brattsten and
Metcall [2,3.4], have suggested that the use of Pb which inhibits monooxygenases,
could be used to alter the LD, of carbaryl, which is metabolized by monooxygenases
to indicate in vivo monooxygenasc level in insects. Brindley [5] has indicated that
synergist diffcrence (SD) and percent dependency (% D) were more useful paramet-
ersin estimating monooxygenase or other enzyme system in vivo than synergist ratio.
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Bioassays could effectively be used if the physiological and environmental fac-
tors are standardized [6]. Previous work, however, confirmed the effectiveness of the
insccticide bioassay and revealed population differences in susceptibility and deto-
xification potential in field populations of black grass bugs [7] and pea aphids [8].

It is well established that monooxygenase activity shows considerable variation
with respect to the physiclogical tactors such as species. strain, sex, age, stage of
development, and endogenous or exogenous factors and the environmental factors
such as pesticide pressure, diet, and secondary plant substances [9,10.11].

Therefore, this study was organized to test the ability of the synergistic contact
bioassy for tracing monooxygenase level in field through sequential generations of
house fly and estimating its role in carbaryt, parathion, and diazinon detoxification.
The data of the present study are interpreted by calculations of SD and %D values
[5]-

Materials and Methods

Insects

Laboratory strain of house flies was reared on natural diet of milk and sugar as
described by Al-Rajhi er o/, [12]. Pupae were collected from decayed matter and
organic wastes located in the farm of Animal Production Department, Oleisha,
Riyadh. Adults of the first generation were considered as a field strain, those of the
fourteenth gencration were considered susceptible strain.

Chemicals

In addition to the synergist, Pb. three insecticides were also used in this study:
Carbaryl (I-naphthyl N-mecthylcarbamate (analytical grade, 99.4%). Parathion (0,0-
diethyl -0-p-nitrophenyl phosphorothioate (analytical grade, 99.9%) and diazinon
[0.0-dicthyl-0- (2-isopropyl 4-methyl -6- pyrimidly) phosphorothiolate] (analvtical
grade, 99.9%). These chemicals were supplied by the United States Environmental
Protection Agency.

Bioassay procedures

Chemicals and insects were introduced into the bioassay vials as follows:

Parathion. diazinon, carbaryl, and Pb were dissolved in acctone and diluted to
make several concentrations of insecticides and 100 gg Pb per vial. A volume of 0.5
ml of each concentration was transferred to each vial. The solutions containing the
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insecticides or the syncrgist were then allowed to evaporate by placing each vial side
ways on a breadboard rolling the vials as evaporation occurred. This action permit-
ted the solution inside the vials to leave a residue evenly distributed on the inner walls
of the vials.Each bioassay included at least 5 different concentrations of insecticide
and each concentration was replicated 4 times. The insects were pretreated with Pb
by placing them in vials containing 100 ug residues of Pb. The insects were then trans-
ferred after 4h into vials containing several concentrations of insecticides. The vials
were covered with cheesecloth. Five insects were used in each treated vial. The
bioassay temperature was held at 25 + (.5 C. Several precautions were taken to
insure that insects were alive and healthy during the 24h time interval of each expe-
riment.

Results

Figures 1-3 show the susceptibility of house fly generatins to carbaryl, parath-
ion, and diazinon with and without Pb. The figures clearly indicate that the suscepti-
bility of house fly generations to the three insecticides increased considerably as
house flies advanced in gencration. The toxicities of carbaryl, parathion, and diazi-
non have increased by 11, 45, and 346-fold respectively for the S strain compared to
tield strain (Fig. 4-6). Parathion was more toxic to the 5 strain (LCg, 0.013 pg per
vial) than diazinon (LCg, 0.33 ug per vial). Carbaryl showed the lowest toxicity
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Fig. 6. Toxicity of diazinon on susceptible and field strains of house flies with and withort piperonyl

butoxide

against the flies (LC4 35 ug per vial). No mortality among field strain occurred in
treatment with up to 2 mg carbaryl per vial, the highest carbaryl amount that could
be dissolved in 0.5 mi acetone.

Table 1. Toxicity of synergized or unsynergized carbaryl, parathion, and diazinon to field and S strains
of house fly.

. Field strain Susceptibie strain
Insecticide
LC,, Synergized %D on MFO LC,, Synergized “%DonMFQ
(peg/vial) LC,, (egfvial) LGy,
Carbaryl 400% 160 63 35 H 71
Parathion 4.5 1.7 63 0.015 0.005 03
[iazinon 15 6 62 (r.44 0.23 47

*for the third generation
LCy, Values are calculated by liner regression

CSD s caleulated from the equation: log LG, = 1.014 log (CSD) — 0.009.

Unsynergized LC,, — Synergized LC,,

%D =

Calculated Synergist Difference (CSD)
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Treatment with Pb enhanced the toxicity of carbaryl, parathion, and diazinon
with similar degrees. The table shows the %D values of the tlies on monooxygenase
for detoxification of the three insecticides used in this study.

Discussion

The enhancement of carbaryl, parthion, and diazinon toxicities by Pb treatment
revealed the relative importance of the flies monooxygenases in detoxification ot the
three insceticides. Metealf and Fukuto {13] reported great enhancement of carbaryl
toxicity against house flies when Pb was used.

Osman and Brindley [7] found that grass bug’s monoxygenase detoxitication
was fess important than that of the alfalfa Ieafeutting bee. where monooxygenases
have an important role [14]. On the other hand, Al-Rajhi and Brindley {#] indicated
that Pb did not enhance carburyl toxicity against pea aphids. They concluded that
aphids  may be  dependent  on  detoxification  mechanism(s)  other  than
MONOOXYRenase,

The relative tolerance of the house fly ficld strains to carbaryl toxieity may be
attributed  to penetration or  detoxification  mechanism(s)  other  than
MONOOXYgenase.

The cstimated %D values for monooxygenase detoxification ot carbaryl,
parathion, and diazinon were similar for the field and S strains indicating that
environmental factors have little or no effect on flies monooxygenase level.

The data of this study confirmed the effectiveness of the synergistic broassaysin
revealing monooxygenase level and role in house flies and obviate the possible alter-
native detoxification mechanism (s). It also indicated that environmental factors
have little or no effect on monooxygenasc level in house flies, under such limited and
homogeneous population of inscct inhabiting the location.
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