The 2-Pyroxene Geothermometer of the Kapalagulu Layered Intrusion, Tanzania, East Africa

Ahmed A. Almohandis

Geology Department, College of Science, University of Riyadh, Riyadh, Saudi Arabia.

The kapalagulu intrusion in Western Tanzania is a layered sequence of ultrabasic and basic cumulates. It consists of olivine, plagioclase, Ca-poor and Ca-rich pyroxenes as the major minerals.

The 2-pyroxene geothermometry of Wood and Banno was applied to investigate the cooling stages in the intrusion compared with the remarkable cryptic variation displayed by Ca-poor Pyroxene.

The Ca-poor pyroxene shows a phase change from primary orthopyroxene to inverted pigeonite at a lower temperature ($<1000^{\circ}$ C) than that of the Bushveld at similar compositional range, for both intrusions.

The equilibration temperatures for exsolution lamellae in the inverted pigeonite was also determined.

The Kapalagulu intrusion is a layered sequence of ultrabasic and basic cumulates. It occurs as a long, tabular body approximately 14.5 km by 1.6 km. It is located some 112 km, South of Kigoma town, Western Tanzania, East Africa. A geological map of the intrusion with sample locations is shown in Fig. 1.

The intrusion consists of three major Zones; the Basal, Intermediate and Main Zone. The Main Zone has been divided into five sub-zones; namely, MZa, MZb, MZc, MZd and MZe (Wadsworth 1963, Almohandis 1977).

The cumulus mineralogy of the Kapalagulu intrusion is simple with olivine, plagioclase, Ca-poor and Ca-rich Pyroxenes as the major minerals. Minor cumulus chromite occurs only in the Basal Zone, usually with immiscible sulphides and biotite. Cumulus ilmenite and apatite occur only in the upper layered series of the Main Zone. The cumulus mineralogy, phase layering, mineral compositions, and the nomenclature of the Kapalagulu Zones and Sub zones are summarized in Fig. 2 using an arbitrary height scale.

The purpose of this paper is to apply the 2-Pyroxene geothermometer (OPX-CPX) on the Kapalagulu layered series and to investigate the cooling history compared with the distinctive cryptic variation displayed by the mineral compositions, especially Ca-poor-Pyroxene.

Potential Geothermometers

There are many potential geothermometers in which the effect of pressure can be ignored (Carmichael *et al.*, 1974) Some of these geothermometers have been calibrated experimentally. The principle of estimating the geothermometry in petrology depends on the thermodynamic calculations. Thus, Carmichael *et al.* (1974) showed that $(\partial \Delta G_{r^{\circ}} / \partial P) = \Delta V^{\circ} \simeq 0$, which indicates that ΔV° is the sum of the molar volumes of the products less that of the reactants, all in their standard states at constant temperature.

The most useful geothermometers at the present time include the Ni geothermometer of Hakli and Wright (1967), the apatite-phlogopite geothermometer (Ludington 1973), the iron-titanium oxide geothermometer (Buddington and Lindsley 1964), the pyrrhotite-pyrite geothermometer (Toulmin and Barton 1964), and the orthopyroxene-clinopyroxene geothermometer (OPX-CPX) (Boyd 1969).

The OPX-CPX geothermometer

This geothermometer is based on the fact that Ca-rich pyroxene and Ca-poor pyroxene are immiscible over a wide range of temperature and composition. Davis and Boyd (1966) found that the immiscibility region for the magnesian end member is relatively uneffected by pressure. They found that the solubility of enstatite in Ca-rich pyroxene is temperature dependent.

Methods of estimating the equilibration temperatures of coexisting pyroxenes in the system $CaSiO_3 - MgSiO_3 - FeSiO_3$ have been advanced by Wood and Banno (1973), Saxena and Nehru (1975) and Ross and Huebner (1975). The first method of Wood and Banno was determined to be the most appropriate and accurate method in the present study. This method enables equilibration temperatures of coexisting pyroxenes to be calculated with a reasonable degree of accuracy which should produce results accurate to about 70°C (Wood and Banno 1973).

All the equilibration temperatures of the available coexisting pyroxenes have been calculated using the following equation:

$$T = \frac{-10202}{2.303 \log_{10} \left(\frac{CPX_{a}Mg_{2}Si_{2}O_{6}}{OPX_{a}Mg_{2}Si_{2}O_{6}}\right) - 7.65X_{Fe}^{OPX} + 3.88(X_{Fe}^{OPX}) - 4.6}$$

T is the temperature of equilibration in K°

The 2-Pyroxene Geothermometer of the Kapalagulu Layered Intrusion, Tanzania 201

PyX_a Mg₂ Si₂ O₆ is the activity of enstatite in Ca- ich pyroxene which equals:

Y (M1). Y (M2).
$$\left(\frac{Mg}{Mg} + Fe\right)^2$$
 PyX.

Y (M1) and Y (M2) are M1 and M2 sites that remain after subtracting the occupancies of these sites by the octahedrally coordinated ions assuming that the large ions such as Ca_{2^+} and Mn_{2^+} present in the ortho and clinopyroxene structure occupy M2 while the smaller octahedrally coordinated ions such as Al^{3^+} , Cr^{3^+} and Ti^{4^+} occupy M1 site.

$$X_{Fe}^{OPX} = \frac{(Fe^{2^{+}})}{Fe^{2^{+}} + Mg^{2^{+}}}$$

The equilibration temperatures of Ca-rich and Ca-poor pyroxene pairs are shown in Table 1, while the equilibration temperatures of subsolidus lamellae are shown in Table 2.

Method of Pyroxene Analysis

Analysis of pyroxene was carried out using a Cambridge Geoscan II electron microanalyser. An accelerating voltage of 15 KV and a specimen current of 1.8×10^{-8} amps. was used. A beam focussed to a diameter of approximately 2-3 microns was maintained. Standards used were synthetic and natural minerals and pure metals. Data processing was by the computer program of Rucklidge and Gaspirini (1969).

Discussion

The equilibration temperatures and the MgR ($100 \text{ Mg/Mg}^{2+} + \text{Fe}^{2+} + \text{Mn}^{2+}$) of Ca-poor pyroxene have been plotted in Fig. 3 to show the equilibration temperatures and the cryptic variation along the stratigraphic succession of the Kapalagulu layered Series. Although the variation of equilibration temperatures should reflect generally the iron-enrichment in Ca-poor pyroxene, they failed to show continuous and consistent relationships with the changing composition of pyroxene. This is due probably to the fact that Ca-rich pyroxene occurs as an intercumulus phase in some sampls, and to the uncertainties in the method ($\pm 70^{\circ}$, Wood and Banno 1973). However, the marked reversals in cryptic variation shown by Ca-poor pyroxene at the bottom of MZd are also indicated in the equilibration temperatures diagram (Almohandis 1977).

The Ca-poor pyroxene of the Kapalagulu intrusion shows a phase change from primary orthopyroxene to inverted pigeonite at a composition (on Ca-free basis) between Mg₇₀ Fe₃₀ and Mg₆₀ Fe₄₀ which is almost similar to the compositional range

established for the phase change in the Bushveld intrusion (Atkins 1969). However, the point where primary orthopyroxene ceases to form and inverted pigeonite begins to crystallize, is at a lower temperature for the Kapalagulu magma (< 1000 °C) than that of the Bushveld magma (1005 °C, Wood and Banno 1973). The Kapalagulu and Skaergaard pyroxenes would have almost similar miscibility gaps and the orthopyroxene-inverted pigeonite changeover takes place at Mg70 Fe30 in both intrusions. Thus, it is suggested that the difference in the crystallization temperature of pyroxenes of comparable composition from the two intrusions is small. Consequently, the pressure of crystallization of the Kapalagulu intrusion is probably similar or comparable with the 600 bars given for Skaergaard (Lindsley *et al.* 1969).

The equilibration temperature for subsolidus lamellae in the inverted Pigeonite of the MZc (Subzone C of the Main Zone) is 919 °C, while it is between 846 °C and 752 °C for the inverted pigeonite of the MZe (Subzone E of the Main Zone). This is probably the result of slightly higher temperature of formation of the subsolidus lamellae of MZc with slow diffusion of Ca and subsequently their coarser nature and their crystallization under equilibrium conditions. The exsolution lamellae in the inverted pigeonite of MZe is much finer than those of the MZc.

Acknowledgement: I should like to thank Dr. A.C. Dunham for helpful discussions and constant encouragement, Dr. W.J. Wardsworth for providing samples, air photos with continuous encouragement, and to Prof. A.S. Rogers for reviewing the manuscript.

References

- Almohandis, A.A. (1977) Mineralogy of the Kapalagulu layered intrusion. Tanzania. Ph.D Thesis, University of Manchester. U.K. (Unpublished).
- Atkins, F.B. (1969) Pyroxenes of the Bushveld intrusion, South Africa, J. Petrol., 10. 222-249.
- Boyd, F.R. (1969) Electron-Probe study of diopside inclusions from Kimberlite, Am. J. Sci., 267 A, 50-69.
- Buddington, A.F. and Lindsley, D.H. (1964) Iron-titanium oxide minerals and Synthetic equivalents. J. Petrol., 5, 310-357.
- Carmichael, I.S.E., Turner, F.J. and Verhoogen, J. (1974) Igneous Petrology, 739 McGraw-Hill: New York.
- Davis, B.T.C. and Boyd, F.R. (1966) The join Mg₂Si₂O₆ Ca Mg Si₂O₆ at 30 Kilobars Pressure and its application to Pyroxenes from Kimberlites. J. Geophys. Res., 71, 3567-76.
- Hakli, T.A. and Wright, T.L. (1967) The fractionation of nickel between olivine and augite as a geothermometer. Geochim. Cosmochem. Acta, 31, 877-884.
- Lindsley, D.H., Brown, G.M. and Muir, I.D. (1969) Conditions of the ferrowollastonite ferrohedenbergite inversion in the Skaergaard intrusion: East Greenland. In: J.J. Papike (Ed.), Pyroxenes and amphiboles: Crystal chemistry and Phase Petrology. *Min. Soc. Am. Spec. Paper*, No. 2, 193-201.
- Ludington, S.D. (1973) Refinement of the biotite-apatite geothermometer. Geol. Soc. Am. Abstracts, 5, 493-494.
- **Ross, M.** and **Huebner, S.** (1975) Estimation of the minimum temperature for coexistence of orthopyroxene. Pigeonite and augite and its application to prediction of temperature of crystallization of lunar pyroxenes. *Proceeding of the 6th Lunar Science Conf.* 689-91.

The 2-Pyroxene Geothermometer of the Kapalagulu Layered Intrusion, Tanzania 203

- Rucklidge and Gasparini (1969) Specification of a Computer Program for Processing Microprobe Data, EMPADR VII, Publ. of Geol. Dept. of Toronto Univ., Ontario, Canada.
- Saxena, S.K. and Nehru, C.E. (1975) Enstatite-Diopside solvus and geothermometry. Contr. Mineral. Petrol., 49, 259-267.
- Toulmin, P. and Barton, P.B. (1964) A thermodynamic study of pyrite and pyrrhotite. Geochim. Cosmochin. Acta, 28, 641-671.
- Wadsworth, W.J. (1963) The Kapalagulu layered intrusion of Western Tanganyika. Min. Soc. Amer. Special Paper 1, 108-15.
- Wood, B.J. and Banno, S. (1973) Garnet orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contr. Mineral Petrol., 42, 109-24.

Pyroxe	ene Pair	Y(M1)	Y(M2)	PYX _a Mg ₂ Si ₂ O ₆	Fe/Fe + Mg	Mg/Mg + Fe	T ' K	T° C
				ł	Basal Zone			
V250	Opx *	0.93	0.939	0.635	0.148	0.852		1048.3
K250	Cpx *	0.878	0.119	0.798	0.126	0.874	1321.3	
				Inter	mediate Zone			
K237	Орх	0.924	0.939	0.602	0.167	0.833		1131.3
	Cpx *	0.891	0.215	0.132	0.160	0.840	1404.3	
K26	Opx	0.932	0.897	0.540	0.196	0.804		952.6
R20	Срх	0.869	0.080	0.050	0.149	0.851	1225.6	
				м	lain Zone			
21 BCN	Opx	0.946	0.934	0.618	0.164	0.836		989.3
K30	Cpx *	0.888	0.090	0.060	0.135	0.865	1262.3	
	Opx	0.942	0.924	0.614	0.160	0.840		1099.1
K31	Cpx *	0.874	0.167	0.111	0.128	0.872	1372.1	
K334	Opx	0.942	0.931	0.527	0.225	0.775		961.5
	Срх	0.894	0.107	0.062	0.195	0.805	1234.5	

Table 1. Equilibration Temperatures

Pyroxe	ene Pair	Y(M1)	Y(M2)	PYX _a Mg ₂ Si ₂ O ₈	Fe/Fe + Mg	Mg/Mg + Fe	T° K	T° C
	Opx	0.932	0.992	0.564	0.219	0.781		
K34	Срх	0.893	0.094	0.055	0.188	0.812	1211.0	938.0
	Opx	0.950	0.917	0.457	0.276	0.724		885.7
K128	Cpx*	0.908	0.076	0.042	0.218	0.782	1158.7	
K337	Орх	0.960	0.918	0.374	0.349	0.651	Se approve the same	945.9
	Срх	0.903	0.161	0.078	0.269	0.731	1218.9	
	Opx	0.951	0.943	0.514	0.243	0.757		995.7
K61	Cpx*	0.874	0.161	0.084	0.227	0.773	1268.7	
K62	Орх	0.953	0.924	0.558	0.204	0.796		1003.6
	Срх	0.926	0.117	0.076	0.162	0.838	1276.6	
K63	Орх	0.966	0.845	0.471	0.240	0.760	1242.9	969.9
	Срх	0.940	0.102	0.064	0.182	0.818		
K65	Орх	0.958	0.938	0.537	0.227	0.773	1220.0	054.0
	Cpx*	0.939	0.098	0.064	0.169	0.831	1229.0	930.0
	Opx	0.958	0.865	0.418	0.290	0.710	1220.0	1017
K65a	Cpx*	0.899	0.234	0.122	0.238	0.762	1320.9	1047.9

Table I. Equilibration Temperatures (CONTD)

The 2-Pyroxene Geothermometer of the Kapalagulu Layered Intrusion, Tanzania 205

Pyrox	ene Pair	Y(M1)	Y(M2)	PYX _a Mg ₂ Si ₂ O ₆	Fe/Fe + Mg	Mg/Mg + Fe	Т°К	T ° C
				Main Zone (contd.)			
K 66	Орх	0.959	0.917	0.452	0.283	0.717	1252.0	070 0
N 00	Cpx*	0.909	0.167	0.088	0.240	0.760	1252.9	979.9
K172	Орх	0.959	0.915	0.405	0.321	0.679	1224.9	951.9
	Cpx*	0.886	0.174	0.076	0.297	0.709		
K 67	Opx	0.959	0.910	0.395	0.327	0.673	1216.1	943.1
	Срх	0.912	0.141	0.072	0.251	0.749		
	Орх	0.958	0.890	0.350	0.359	0.641	1212.5	939.5
K 08	Срх	0.914	0.162	0.073	0.300	0.700		
	Opx	0.949	0.918	0.321	0.393	0.607	1203.8	930.8
K69	Срх	0.899	0.180	0.074	0.325	0.675		
	Opx	0.946	0.907	0.311	0.398	0.602	1197.2	924.2
K/0	Срх	0.920	0.183	0.070	0.357	0.643		
	Орх	0.957	0.814	0.199	0.494	0.506	1213.4	940.4
K263	Срх	0.910	0.227	0.075	0.400	0.601		

* indicates intercumulus

14

Kapalagulu Intrusion, Tanzania.

howing sample localities (Tanzania, East Africa).

Ahmed A. Almohandis

Pyroxene Pair		Y(M1)	Y(M2)	PYX _a Mg ₂ Si ₂ O ₆	Fe/Fe + Mg	Mg/Mg + Fe	ТК	Τ°C
K 3 3 7	Opx Host	.965	.947	.379	.356	.644	1101 9	010.0
N331	Cpx Lam	.920	.141	.067	.279	.721	1191.8	918.8
K 70	Opx Lam	.957	.457	.200	.323	.677		
	Cpx Host	.919	.201	.076	.357	.643	1336.4	1063.4
K185	Opx Host	.875	.881	.190	.504	.496	1119.4	846.4
	Cpx Lam	.904	.165	.037	.503	.497		
K263	Opx Host	.957	.811	.199	.494	.506		
	Cpx Lam	.901	.191	.016	.417	.303	1025	752.0

.

Table 2. Temperatures of Sub-Solidus Lamellae

Fig. 2. Minerals present in the various rocks of the Kapalagulu layered series, and their compositions. Solid lines indicate cumulus minerals, broken lines represent intercumulus minerals.

BZ - Basal Zone IZ - Intermediate Zone MZ - Main Zone Ahmed A. Almohandis

208

Fig. 3. Graphical representation of the variation of equilibration temperatures of coexisting Pyroxenes and the Cryptic variation in orthopyroxene with the structural height of Kapalgulu intrusion.

. .

الترمومتر الجيولوجى للبير وكسينات في معقد كابالاجولو المتطبق ، تنزانيا ، شرق افريقيا أحمد عبدالقادر المهندس قسم الجيولوجيا ، كلية العلوم ، جامعة الرياض ، المملكة العربية السعودية •

يكون معقد كابالاجولو فى تنزانيا شرق إفريقيا تتابعا طبقيا من الصخور الفوق القاعدية والقاعدية • وتتكون الصخور من المعادن الأساسية التالية :

الأولوفين ، البلاجيوكليز ، والبايروكسـين الغنـى بالـكالسيوم بالإضافـة إلى البايروكسين الفقير بالكالسيوم •

لقد استخدمت فى هذا البحث طريقة القياس الحرارى للبايروكسينات لدراسة مراحل التبرد فى المعقد النارى بالإضافة إلى مقارنتها بالتغيرات الحفية والتى يبديها معدن البيروكسين الفقير بالكالسيوم •

ويبدى البايروكسين الفقير بالكالسيوم تغيرا مرحليا حيث يتغير من اورثوبايروكسين إلى بيجونيت مقلوب عند درجة حرارة (أقل من ١٠٠٠° م) وهى أقل من درجة الحرارة التى يبديها نفس المعدن فى معقد البشفيلد بأفريقيا ولقد عينت أيضا درجات حرارة الاتزان لصفائح المحاليل الملفوظة فى البيجونيت المقلوب ٠