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By means of graded-symmetric and graded-skew bilinear-forms, ~-graded 
generalizations of the pseudo-orthogonal, symplectic and pseudo-unitary 
algebras of transforma tions on ~ -graded real vector spaces can be defined. 
Suitable standard transformations in these ortho-symplectic and graded 
pseudo-unitary algebras are graded generalizations of SINGER and 
THORPE's riemannian curvature structures. In the finite-dimensional case 
they generate the corresponding algebras whence their graded commutation 
relations contain all information on those algebras. It turns out that the 
graded commutation relations of the trivial (pseudo-orthogonal) and the 
graded pseudo-skewherrnitian (graded pseudo-orthogonal) curvatures are 
necessary and sufficient conditions for the graded Jacobi identity of the 
standard embedding algebra. As a special case a symplectic curvature 
concept results. 

1. Introduction to lie-graded algebras 

Let 1'1 be one of the commutative rings Z or Z2' the ground-field K be R or C. and the K-

vector space V be graded of type l'1,i.e.V =.EB Vddirect sums). Let [,]+: V x V-- V bea 
~1'1 -

graded algebra composition, i.e. [Vk,VI]±CVk+1 for all k, 1 in 1'1 . 

We call the pair (V,L] ±) a 1'1-lie graded algebra if in addition 

(LGA.l) [xk,y Ilt = -( _1)kl[y l'xk] ± (graded antisymmetry) 

(LGA.2) [[xk,y I] ±,a] ± = [X.,[y I,a] ±] ± - (_l)kl[y l,[xba] ±] ± 
(graded Jacobi identity), 
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for all Xk in V k' y, in V, and a in V arbitrary. 

These algebra should not be confused with lie algebras which admit a compatible 
graduation. First they were studied by Gerstenhaber (1973), Nyenhuis and Richardson 
(1964), recently by Djokovic (1976), Freund and Kaplansky (1976), Pais and Rittenberg 
(1975), and the author (1977 a, b and c). In 1974 Haefliger used them for the cohomology 
of vector fields. For generalizations of the graduation ~ and the commutation factor 
(_1)kl see Bourbaki (1974) chap. ill, 10 sections 1,4,6. Berezin and Kac (1971) studied a 
generalized lie group concept the local tangent structure of which is a Lie-graded algebra. 

A (~-lie-graded) subalgebra is a graded subspace U = ~ Uj with Ui e Vi and [Uk,U ,J± 
I 

eUH " a (~-lie-graded) ideal is such a subalgebra with [Uk,V,JteUH ,. A 
homomorphism is a homogeneous (necessarily of degree 0) linear mappinf <p, i.e. <pVk 

eV'k, which is a homomorphism of the compositions on V and V'. It is 
straightforeward to prove that ideals are exactly the kernels of homomorphisms, and 
that the class of ~ -lie-graded algebras is a category the morphisms being the 
homomorphisms . 

The standard example of a lie-graded algebra is a graded associative algebra supplied 
with the graded commutator 2[x.,y ,J±= xky 1 -( -lt1YIXk' For instance the algebra end 

:!:V=.ffiA end iV, where endiV is the subspace of endomorphisms of degree i of the 
lEn 

graded vector space V, i.e. endjV(Vk)e Vk+ i ' is of this type. If V is finite dimensional, end 

±V = end V (Bourbaki 1974) remark in chap. II 11.6 Any subspace of end ±V closed 
under graded commutation again is a Lie-graded algebra. A representation is a 
homomorphism into some end !V. Now Bourbaki (1979) chap. ill 10.2 defines 
generallized ~ - graded derivations which according to prop. 1 in 10.4 span ~ -lie-graded 
algebras. There are two important special cases of such graded derivations in end ~ V: (i) 
Given a graded K-algebra (V,.) the spaces deri(Y,') of graded derivations of degree i, 
D(i) E endi V, i.e . D(i) (Vk) e Vi+k and (1) D(i) (Xk.a) = (D(i) xJ. a + (_l)ik Xk' D(i) a, 

Xk EVk, aEV, sum up to a ~ -lie-gpded subalgebra der ±(y,.)=.Ef) deri (V,.) of end ± V; 
lEd 

clearly der! (y,.) is identical with end ±V if. reduces to the trivial zero-composition. 
(ii) Given a bilinear form <, > on the d -graded vector space V, D(i) E en~ V is said 
to be a graded derivation of degree i of (V, < , > ) if for Xk in Vk and any a in V 

(2) < D(i)x.,a > + ( - 1 )ik < xk,D(i)a > = 0; 

the spaces deCj{V, <, > ) of such graded derivations sum up to ad-lie-graded subalgebra 
der :!:(V, <, > ) of end! V, which again is identical to the latter if <, > is the zero-bilinear 

form. In the following sections case (ii) is used to describe a class of Z2-graded 
generalizations of some classical simple real lie algebras. Another class is studied in (Pais 
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& Rittenberg, 1975). Algebras of class (i) might be interesting as well as for physical 
applications in the classification of elementary particles, (V, .) then being a graded 
generalization of a Jordan algebra of observables . 

(LGA.2) means that the left multiplication ad in a Lie-graded algebra (V,[.J i)' defined 
by ad(xk)a = [xk,a] ±, is a representation into the lie-graded algebra der t(V,[,] +), called 
the adjoint representation. -

A bilinear form <, > on the ~-graded vector space V will be said to be graded symmetric 
if < Xk,yl > =( _1)kl < Xk,y 1> ' resp. graded skew if < XbYI > = -( -l)kl < Y I,Xk >. In 
the following < , > always denotes a graded symmetric, 1::,:} a graded skew bilinear 
form, and only the case ~=Z2 is considered. Hence V = Vo@V1 . Given(V, < , > )or (V, 
1:, ::} ), the restrictions TO resp. a 1 of <, > to V 0 resp. V 1 then are symmetric resp. 

skew, the restriction a o resp . TI of 1: ' :t to Vo resp . VI are skew resp. symmetric 
bilinear fonns, i.e. (VO,TO ) and ( VpTI ) are pseudo-orthogonal, (Vo,ao ) and (VI ,a l ) 
are symplectic vector spaces if the bilinear fonns are non-degenerate. Moreover the 
decomposition V = V 0 G} V 1 will be assumed to be < , > - resp. f: , * -orthogonal, i. e. 

< xk,y 1 > = {: xk,y 1 t = 0 if k of 1. 

Throughout the following Xk will be in Vk, YI in V1,zm in Vm, w, in V, and a in V 
arbitrary. 

2. General and special linear, pseudo-orthogonal and symplectic lie-graded algebras of 
graduation type Z2 

The general linear algebra gl±(V,K) is given by end 1: V and the graded commutator. A 
typical element in endk + 1 V is given by 

A verification gives the graded commutation realations 

If V is finite dimensional and <, > non-degenerate, the G(,) generate end ± V linearly 
and (4) may be called the graded commutation relations of gl ±(V,K). Then obviously the 
trace of G(Xk,y I) is < Y 1 ,Xk >. Hence 

is traceless and of degree k + 1: 
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(6) 

Dropping the terms with dim V the corresponding expressions for the G(,) result. A 
simple calculation gives the same graded commutation relations (4) forthe S(,), 
explicitely 

(4d) 

(4e) 

(40 

(4) are the graded commutation relations of gl ±(V,K) resp. sl ±(V,K). (4a) - (4e) show 
that the zero-components are direct lie algebra sums of the corresponding cIassicallie 
algebras. All this can be given as well in terms of any non-degenerate bilinear form on V 

for which Yo ED Y I is an orthogonal sum. 

To get the Z2-lie-graded pseudo-orthogonal algebra der ±(V, <, > ) define 
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This shows that R(x.,y I) is in end. + I V. A tedious but straightforeward verification 
gives 

(8) [R(x.,y 1),R(z""w,)] + = < Y I'Z", > R(x.,w,) -( _1)H < X.'Z'ft> R(y I'W,) -( _1)"" 
< Y I ,w, > R(x.,z",) +( _1).I( -1)'ft' < x.,w, > R(y I ,z",). 

The following inspection of the various special choices of the indices shows that these 
are graded commutation ralations of a lie-graded sub-algebra of gl ±(V,K): 

(8a) [R(xo,yo),R(zo,wo)] - = 'o(yo,zo)R(xo,wo) - 'o(xo,zo)R(yo,wo) 
- 'o(yo,wo)R(xo,zo) + 'o(xo,wo)R(yo,zo) 

together with the first equation (7a) gives the well known commutation relations of the 
(finite-dimensional) pseudo-orthogonal lie algebra der (Vo"o) = {AEendVo/ 'o(Axo,Yo) 
+ 'o(xo,Ayo)=O}, (Jacobson, 1966), p. 232. 

(8b) [R(x l,y 1),R(zl ,w I)] - = (J I (y I ,ZI )R(x i ,w I) + (J I (x l,zl)R(y I'W I) 
+ (J I (y pW I)R(x pZ I) + (J I (x pW I )R(y l,zl) 

together with the second equation in (7c) gives the commutation relations of the 

symplectic algebra der (VI,(JI)={DEendVI /(JI(DxI'YI)+(JI(xl,DYI)=O for all 

xI'YIEVI}' 

(8c) [R(Xo,Yo), R(ZI' WI)] -=0 

together with (a) and (b) shows that the R(xo,yo) and R(x I ,Y I) span the direct lie algebra 
sum of the pseudo-orthogonal lie algebra on (V 0"0) and the sympletic algebra on 
(V I ,(J I)' In addition 
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A verification shows that R(xby JEderH 1 (V, <, », i.e. that (2) holds for R(x.,y I) 
= D(· + I). If V is finite-dimensional and <, > non-degenerate dimensional arguments 
show that the R(,) span der±(V,<,». Then the trace of R(,) vanishes. Hence the 
equations (8) are the graded commutation relations of the Z2-graded ortho-symplectic 
algebra, described also in (Pais and Rittenberg, 1975). 

If V is finite-dimensional over K = R there is a natural basis in which the matrix of <, > 
is 1<.> =diag(I.J,,) where I, =diag(idp,-id,) with p +q = no =dimVo and JO' =antidiag 
(-id",id,,) (if (J is non-degenerate which implies 2d = n l =dimV I)' The matrix of D(i) in 
(2) then is 

(9) 
( A DB) with A'I,+I,A=O and D'J" +JO'D =0, 

-JO'B'I, 

where A is a square no matrix, D a square n l matrix and B an arbitrary rectangular 
matrix of no rows and n 1 columns. The dimension of the real ortbo-symplectic algebra 
is 1n(n + 1) -no with n =no + n l =dimV. Since the concept of a graded (orthogonal) 
curvature structure, to be discussed in the last section, has a graded-symplectic analog, 
we add the corresponding facts on the Z2-graded symplectic algebra der i(V, 1:,:t ) 
although it results from der±(V, <,» by interchanging the indices 0 and 1, i.e. by 
taking the derived graduation of L\ by means of the nontrivial automorphism of Z2' 
described in example (2) chap. II ILl of (Bourbaki, 1974). The typical linear 
transformation in deruI(V,{,t) is defined by 

with P(YI'Xk)=( -1)k1 p(xbYI) and vanishing trace. Their graded commutation 
relations are (Tilgner, 1977 a). 

[P(XbYI)'P(Z""W,)]+ = i::YI,Zm:t- P(xbw,)+( _1)kl {:xk,z",:t P(YI'W,)+( -1)""{YI'W, 
:t- p(xk,z".) + ( _1)k 1 ("-1)"" 1: Xk, w,:} P(y 1 ,z".). 

Denoting the matrix of {:,:t by 11: :} = diag(J",I,), the typical matrix D(i) in (2) now is 

(~ J"~'I') with the same conditions on A,B,D as in (9). 

3. Z2-graded pseudo-unitary algebras 

Let us first describe the ordinary speudo-unitary Lie algebra u(p,q) on a finite­
dimensional complex vector space U: It is the space of complex square p +q matrices 
M leaving invariant the nondegenerate hermitian form < < X,Y > > = x'I,y·, where I, 
=diag(idp, - id,), which means < < Mx,y > > + < < x,My > > =0 for all X,yEU or in 
matrix form MfJ,+ I,M =0. M =A +iBEu(p,q) is equivalent to A'I,+ I,A =0 and B'I, 



Zz-Graded Generalizations of Some Classical Lie Algebras and"" 201 

= ItB. Consider on the real 2n-dimensional vector space V with n = p + q, a skew 

b·li l" d . A. • (0 - It) (It 0) I near lonn "an a symmetnc one r with matnces and resp .. It is 
It 0 0 It 

welJ known that 

(10) M=A+iB 1-+ ( AB -B) A =:M 

is a Lie algebra isomorphism of u(p,q) onto the space of real square 2n matrices M 
subject to M 'I~+ I; M =0= M'J .. +J .. M, i.e. onto the intersection of so (2p,2p;R) with 
the symplectic algebra on (V,a )(the latter being conjugate but not necessarily equal to 
sp(2n,R». This real version of u(p,q) will be denoted by u,(p,q) in the following. Now the 

(
0 -id) matrix J = id. o· with J2 = - id 211 is a complex structure on V such that given two 

of the three structures t, a, J, the third is determined uniquely, explicitely 

(11) r(J x,z) = - a(x,z) 

r(x,Jz) = a(x,z) 

a(Jx,z) = r(x,z) 

a(x,Jz) = - r(x,z) 

J defines a Cart an decomposition of the symplectic algebra on (V,a) into the two 
eigenspaces of eigenvalues 1 and - 1 of the involutive automorphism M 1-+ JM J - 1 of 
the form 2 M = M +JMF Ie) M -JMr I where the first eigenspace of eigenvalue 1 is 
u,(p,q). The element R(x,y) of so (2p,2q;R) defined in the first equation in (7a) hence can 
be used to define a typical element U(x,y) of u,(p,q) by 

(12) U(x,y)a = {R(x,y) +JR(x,y)r I}a = ~(y,a)x - r(x,a)y + a(a,y)Jx -a(a,x)Jy 

with U(y,x)= - U(x,y) and the commutation relations 

(13) [U(x,y),U(z,w)] = {~(y,z)U(x,w)+ a(z,y)U(Jx,w)r- {r(x,z)U(y,w) 
+ a(z,x)U(Jy,w)} - tT(y,w)U(x,z) + a(w,y)U(Jx,z)} + {i(x,w)U(y,z) 
+ a(w,x)U(Jy,z)} 

If V is finite-dimensional the U(x,y) span u,(p,q). 

To get aZ2-graded generalization ofu,(p,q) on V = Voe)V l' we introduce besides <, > 
and 1::,:} a complex structure JEendo V, i.e. J2 = - id \ which is the diagonal of two 
complex s! ructures J 0 on V 0, J 1 on V I related to to and () 0, t 1 and a 1 as indicated in( 11). 
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Hence 

(14) 

< Jxk,Z .. > = -( -It''1: Xk'Z",} = 1:z .. ,xki-
The Z2-ue-graded pseudo-unitary algebra u ;(V, <, >,1) is now defined as der±(V, <, 
»n der±(V, 1:, ::H Again a Cartan decomposition of der±(V, {:,::t) can be used to 
construct its standard linear transformation: J induces an involutive automorphim of 
der.:!:(V,{,:?) by 

(15) J:Ali'I-+(-I)iJAii)rl, Aii)Eder,~V,{:,:}), 

and u ~(V, <, >,1) is exactly the eigenspace of eigenvalue I. Hence 

+ ( - I)k+ I 1: a,y I 1- Jxk - ( - I)k+ I (-I )kl 1: a,xk :} J y I. 

with U(YI'Xk)= _(_I)klU(Xk,yl) is in u;(V,1:,:},1). Using the<,>- and{:,:}­
orthogonality of V 0 ~ V I a simple but tedious calculation gives the graded 
commutation relations 

(I 7) [U(xk,y 1)'U(Z""w,)] + = { < Y I ,Z .. > U(XbW,) + ( - I)k+ 1 1: z .. ,y I ::t U(Jxk,w,)} -
(- I)k! { < Xk,Z .. > U(y l' W,) + ( - It + I 1 Zm,Xk :} U(J Y I' w,)} - ( - 1)"" { < Y l' W, > 
U(Xk.Z",) + ( - It+ I 1: W"Y 1 :} U(Jxk,Z",)} + ( _I)kl( _1)m, {< Xk'W, > U(y 1 ,Zm) 
+( -It+ 11: W"Xk 1- U(JYI'Z~}. 

If V is finite-dimentional the U(xk,y 1) span u ;(V, <, > ,J). To verify that (17) are graded 
commutation relations of a graded algebra the various special choices of the indices 
must be discussed: The O-O-case is (I 3), which together with 

[U(x I'Y I),U(ZI'W I)] - = a l (y I ,z1)U(X I'W I) + i I (y 1 ,z1)U(J I x I'W I) 

(l7b) - {a1(x l ,z1)U(y I'W 1) + i I (x 1 ,ZI)U(J IY I'W I)} 

- {al(y I'W I)U(X 1,z1) + i(y I'W I)U (11 Xl, ZI)} 
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shows that the O-component of this algebra is the direct lie algebra sum of the pseudo­
unitary lie algebra (V 0, TO'O" 0) and (as will be shown below) that on (V I' I 1'0" I)' The 
anticommutation relations are 

(l7d) [U(XO,yI)'U(ZO,w l )] ... = -IO(XO,zO)U(YI,WI)-O"o(xO,zO)U(J1 YI'W I) 
- 0" 1(Y I'W I)U(XO'zo)+ I I(Y I ,w t)U(Jo xo,zo), 

and the two remaining commutation relations (e) and (0 are of similar type such that 
[U(xo,Yo),U(zo,w l )]- and [U(xt,yt), U(zo,w t)]- are linear combinations of theU(ao,b l ), 

i.e. in the I-component of the algebra. It remains to identify the space spanned by the 
U(x\>y\) in the o-component as the pseudo-unitary Lie algebra on V I: U(X\>YI) in (16) and 
(17b) is the pseudo-unitary standard transfonnation U(Jx,y) in (12) and an easy 
calculation gives from (17b) the commulation relations (13) for the U(JIX\>YI)' 

In a basis of a finite-dimensional V in which Ii has the matrix Iti and O"j the matrix Jai• the 
elements of a matrix form of u ;(V, <, >,1) are 

(18) ~) 
where A is a square 2no matrix subject to A'1~o + 1;0 A =0 = A'Jao + J .. o A, D a square 2nt 
matrix subject to D'I, + I" D= 0= D'J .. , +J .. , D. and B a rectangular matrix with 2no 
rows and 2n 1 columns su bject to the equation J .. o BI'I = -1;oBJ,q ' This leaves only 
2nonl matrix elements of B independent. Hence the real dimension of the graded 

pseudo-unitary algebra is (no + n 1)2. The involutiveautomorphism (15) of der±(V,.j:, 
j. ) is in matrix form 

It remains to generalize some well known embeddings of classical Lie algebras, for 
instance su(p,q). gl(n,K) in sp(2n,K) and so(p,q;R) in u,(p,q). 

4. Z 2-graded curvature structure 

Let V be finite-dimensional, <. > a graded-symmetric bilinear fonn as above. A Z2-
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graded curvature structure on (V, <, > ) is defined as the lililear continuation of a bilinear 
mappmg 

subject to the axioms 

(GCl) 

(GC2) 

(graded Bianchi identity) 

(GC3) 

(GC3)obviously means C(xk,y l)Ederk + I(V, <, ». C induces a linear mapping of degree 
zero ofVEBV with its total graduation Z2' (Bourbaki, 1974), remark inchap. IIlII.S, into 
end "!:V. The trivial curvature structure on (V, <, » is R defined in (7). Denoting the left 
hand side of (GC2) by 

( _1)k(m+,) < ~)y I'W"Xk),z", > - (_I)kl + I",+kr < ~)w"z""y 1),Xk > + 

(_l)kr+ 1,+ 1m <C(W.,Zm)Xk'YI >, hence 

(GC4) 

This equation shows that C is a Z2-graded generalization of Singer and Thorpe's 
riemannian curvature structure studied by (Kowalski, 1973; Kulkarni, 1968 and 1970; 
Nomizu, 1972) and in a little different notation by (Gray, 1971; Marcus, 1975 chap. 4, 
and Singer and Thorpe 1968). Let curv(V, <, » denote the linear space sJlanned by the 
curvature structures on V «, > ). It remains to generalize Singer and Thorpe's direct 
decomposition given by (Nomizu, 1972 and Singer and Thorpe, 1968) to curv (V, <, > ). 
Given CEcurv (V, <, » we call 
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Cartan's condition for A(ilEderj(V, <, » . Ifit is satisfied for all C(xt,y 1) = A(i), i.e. i = k 
+ 1, then the image of C is a subalgebra of der + (V, <, », if it is satisfied for all 
A(i)Eder,{V,<,» then this image even is an ideal. Choosing A(i)=C(Xt,yl) and C=R 
Cartan's condition reduces to the graded commutation relations (8) of the ortho­
symplectic algebra. 

The standard ·transformations U(Xt'Yl) of u;(V,<,>,J) are J-dependent curvature 
structures on (V, <, > ) which may be called J-pseudo-skewhermitian. Again Cartan's 
condition for such a U reduces to the graded commutation relations (17). 

The following is a graded generalization of a result due to E. Cartan, described for 
instance in (Helgason 1962) chap. IV. Given CEcurv(V, <, » we define a C-dependent 

graded skew algebra composi tion on . (£)A (C(V t, VI) Q V J, i = k + 1, by 
lEu 

(20) [A(t)EBxt,B(1)EBY1]± =!<A(t)B(I)-( -lt1B(l)A(t»-C(Xt,yl)EBA(t)Yl -

(_I)kl B(I)Xk 

and linear continuation. 

(21) l£mma: (20) is a lie-graded algebra composition if and only if (19) holds for all A (il 
=C(Xt,yl) and i =k + 1. This algebra is called the standard embedding ofe. Lemma (21) 

gives two lie-graded algebras: O(£) (der,{V, <:, > )EBVI) in the ortho-symplectic and 
,1 

O
(£) (u ± ,(V, <, > ,JMB V I) in the pseudo-unitary case. The dimension of the latter 
,1 

obviously is n(n + 1). The linear mapping w:A (i) + vil-+ A (i) - VI defines an involutive 
automorphism of these algebras whose eigenspace of eigenvalue± is exactly the lie­
graded subalgebra i_~l C(Vk,V 1) resp. the subspace V. One verifies that the eigenspace of 
eigenvalue -1 is closed with respect to the graded double commutator, i.e. [[Vk,Vd:t V mR­
c Vk+l+m' Indeed there is a graded generalization of Lie triples, which are exactly of this 

type, such that the well know relation with Lie algebras remains valid. Cartan's condition 
for C then becomes one of the three axioms of a ~-graded generalized lie triple, written in 
tenns of the left multiplication C(x,y)a - [x,y,a]~ (see Tilgner, 1977b). 

It remains to generalize the results on riemennian curvature, if possible including 
torsion, to the Z2-graded case, and especially to the induced symplectic curvature on 
(V I,a I)' 
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