\mathbf{Z}_{2}-Graded Generalizations of Some Classical Lie Algebras and Curvature Structures

Hans Tilgner

Department of Mathematics, Faculty of Science, Riyad University, Riyad, Saudi Arabia.

Abstract

By means of graded-symmetric and graded-skew bilinear-forms, Z_{2}-graded generalizations of the pseudo-orthogonal, symplectic and pseudo-unitary algebras of transformations on Z_{2}-graded real vector spaces can be defined. Suitable standard transformations in these ortho-symplectic and graded pseudo-unitary algebras are graded generalizations of SINGER and THORPE's riemannian curvature structures. In the finite-dimensional case they generate the corresponding algebras whence their graded commutation relations contain all information on those algebras. It turns out that the graded commutation relations of the trivial (pseudo-orthogonal) and the graded pseudo-skewhermitian (graded pseudo-orthogonal) curvatures are necessary and sufficient conditions for the graded Jacobi identity of the standard embedding algebra. As a special case a symplectic curvature concept results.

1. Introduction to lie-graded algebras

Let Δ be one of the commutative rings Z or Z_{2}, the ground-field K be R or C, and the K vector space V be graded of type Δ, i.e. $\mathrm{V}=\underset{\mathrm{i} \in \Delta}{\oplus} \mathrm{V}_{i}$ (direct sums). Let $[,]_{ \pm}: V \times \mathrm{V} \rightarrow \mathrm{V}$ be a graded algebra composition, i.e. $\left[\mathrm{V}_{k}, \mathrm{~V}_{1}\right]_{ \pm C} \mathrm{~V}_{\mathrm{k}+1}$ for all $\mathrm{k}, 1$ in Δ.

We call the pair (V,[, $]_{+}$) a Δ-lie graded algebra if in addition
(LGA.1) $\left[\mathrm{x}_{k}, \mathrm{y}_{1}\right]_{ \pm}=-(-1)^{k_{1}}\left[\mathrm{y}_{1}, \mathrm{x}_{k}\right]_{ \pm}$(graded antisymmetry)
(LGA.2) $\left[\left[\mathrm{x}_{k}, \mathrm{y}_{1}\right]_{ \pm}, \mathrm{a}\right]_{ \pm}=\left[\mathrm{x}_{k},\left[\mathrm{y}_{1}, \mathrm{a}\right]_{ \pm}\right]_{ \pm}-(-1)^{k 1}\left[\mathrm{y}_{1},\left[\mathrm{x}_{k}, \mathrm{a}\right]_{ \pm}\right]_{ \pm}$
(graded Jacobi identity),
for all x_{k} in V_{k}, y_{1} in V_{1} and a in V arbitrary.
These algebra should not be confused with lie algebras which admit a compatible graduation. First they were studied by Gerstenhaber (1973), Nyenhuis and Richardson (1964), recently by Djokovic (1976), Freund and Kaplansky (1976), Pais and Rittenberg (1975), and the author (1977 a, b and c). In 1974 Haefliger used them for the cohomology of vector fields. For generalizations of the graduation Δ and the commutation factor $(-1)^{k 1}$ see Bourbaki (1974) chap. III, 10 sections $1,4,6$. Berezin and Kac (1971) studied a generalized lie group concept the local tangent structure of which is a Lie-graded algebra.
A (Δ-lie-graded) subalgebra is a graded subspace $\mathrm{U}=\oplus_{\mathrm{i}} \mathrm{U}_{i}$ with $\mathrm{U}_{i} \subset \mathrm{~V}_{i}$ and $\left[\mathrm{U}_{k}, \mathrm{U}_{1}\right]_{ \pm}$ $\subset \mathrm{U}_{k+1}$, a (Δ-lie-graded) ideal is such a subalgebra with $\left[\mathrm{U}_{k}, \mathrm{~V}_{1}\right]_{ \pm} \subset \mathrm{U}_{k+1}$. A homomorphism is a homogeneous (necessarily of degree 0) linear mapping φ, i.e. $\varphi \mathrm{V}_{k}$ $\subset \mathrm{V}^{\prime}{ }_{k}$, which is a homomorphism of the compositions on V and V^{\prime}. It is straightforeward to prove that ideals are exactly the kernels of homomorphisms, and that the class of Δ-lie-graded algebras is a category the morphisms being the homomorphisms.

The standard example of a lie-graded algebra is a graded associative algebra supplied with the graded commutator $2\left[\mathrm{x}_{k}, \mathrm{y}_{1}\right]_{ \pm}=\mathrm{x}_{k} \mathrm{y}_{1}-(-1)^{k 1} \mathrm{y}_{1} \mathrm{x}_{k}$. For instance the algebra end $\pm \mathrm{V}=\underset{\mathrm{i} \in \Delta}{\oplus}$ end $_{i} \mathrm{~V}$, where end $\mathrm{V}_{\mathrm{i}} \mathrm{V}$ is the subspace of endomorphisms of degree i of the graded vector space V , i.e. $\operatorname{end}_{i} \mathrm{~V}\left(\mathrm{~V}_{k}\right) \subset \mathrm{V}_{\boldsymbol{k}+\boldsymbol{i}}$, is of this type. If V is finite dimensional, end ${ }^{ \pm} \mathrm{V}=$ end V (Bourbaki 1974) remark in chap. II 11.6 Any subspace of end ${ }^{ \pm} \mathrm{V}$ closed under graded commutation again is a Lie-graded algebra. A representation is a homomorphism into some end \pm V. Now Bourbaki (1979) chap. II 10.2 defines generallized Δ-graded derivations which according to prop. 1 in 10.4 span Δ-lie-graded algebras. There are two important special cases of such graded derivations in end $\pm \mathrm{V}$: (i) Given a graded K-algebra ($V,$.$) the spaces \operatorname{der}_{i}(V,$.$) of graded derivations of degree i$, $D^{(i)} \in$ end $_{i} V$, i.e. $D^{(i)}\left(V_{k}\right) \subset V_{i+k}$ and (1) $D^{(i)}\left(x_{k} \cdot a\right)=\left(D^{(i)} x_{k}\right) \cdot a+(-1)^{i k} x_{k} . D^{(i)} a$, $x_{k} \in V_{k}, a \in V$, sum up to a Δ-lie-graded subalgebra $\operatorname{der}{ }^{ \pm}\left(V_{, .}\right)=\oplus_{i \in \Delta}^{\oplus} \operatorname{der}_{i}(V,$.$) of end \pm V$; clearly $\operatorname{der}^{ \pm}(\mathrm{V},$.$) is identical with end \pm \mathrm{V}$ if. reduces to the trivial zero-composition. (ii) Given a bilinear form $<,>$ on the Δ-graded vector space $V, D^{(i)} \in e^{e n d} d_{i} V$ is said to be a graded derivation of degree i of $(\mathrm{V},<,>)$ if for x_{k} in V_{k} and any a in V
(2) $\left\langle\mathrm{D}^{(i)} \mathrm{x}_{\mathrm{k}}, \mathrm{a}\right\rangle+(-1)^{i k}<\mathrm{x}_{k}, \mathrm{D}^{(i)} \mathrm{a}>=0$;
the spaces $\operatorname{der}_{i}(\mathrm{~V},<,>)$ of such graded derivations sum up to a Δ-lie-graded subalgebra $\operatorname{der} \pm(\mathrm{V},<,>)$ of end ${ }^{ \pm} \mathrm{V}$, which again is identical to the latter if $<,>$ is the zero-bilinear form. In the following sections case (ii) is used to describe a class of Z_{2}-graded generalizations of some classical simple real lie algebras. Another class is studied in (Pais
\& Rittenberg, 1975). Algebras of class (i) might be interesting as well as for physical applications in the classification of elementary particles, ($\mathrm{V},$.) then being a graded generalization of a Jordan algebra of observables.
(LGA.2) means that the left multiplication ad in a Lie-graded algebra ($\mathrm{V},[]_{ \pm}$), defined by $\operatorname{ad}\left(\mathrm{x}_{k}\right) \mathrm{a}=\left[\mathrm{x}_{k}, \mathrm{a}\right]_{ \pm}$, is a representation into the lie-graded algebra $\operatorname{der}^{ \pm}\left(\mathrm{V},[,]_{ \pm}\right)$, called the adjoint representation.

A bilinear form <,> on the Δ-graded vector space V will be said to be graded symmetric if $\left\langle\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}\right\rangle=(-1)^{k_{1}}\left\langle\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}\right\rangle$, resp. graded skew if $\left\langle\mathrm{x}_{k}, \mathrm{y}_{1}\right\rangle=-(-1)^{k_{1}}\left\langle\mathrm{y}_{1}, \mathrm{x}_{k}\right\rangle$. In the following $<,>$ always denotes a graded symmetric,,$<, \ngtr$ a graded skew bilinear form, and only the case $\Delta=Z_{2}$ is considered. Hence $V=V_{0} \oplus V_{1}$. Given $(V,<,>)$ or $(V$, $\Varangle, \ngtr)$, the restrictions τ_{0} resp. σ_{1} of $<,>$ to V_{0} resp. V_{1} then are symmetric resp. skew, the restriction σ_{0} resp. τ_{1} of $\$$, \ngtr to V_{0} resp. V_{1} are skew resp. symmetric bilinear forms, i.e. $\left(\mathrm{V}_{0}, \tau_{0}\right)$ and (V_{1}, τ_{1}) are pseudo-orthogonal, $\left(\mathrm{V}_{0}, \sigma_{0}\right)$ and ($\mathrm{V}_{1}, \sigma_{1}$) are symplectic vector spaces if the bilinear forms are non-degenerate. Moreover the decomposition $\mathrm{V}=\mathrm{V}_{0} \oplus \mathrm{~V}_{1}$ will be assumed to be $<,>-$ resp. k, \ngtr-orthogonal, i.e. $\left\langle\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}\right\rangle=\left\langle\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1} \nmid=0\right.$ if $\mathrm{k} \neq 1$.

Throughout the following x_{k} will be in $\mathrm{V}_{k}, \mathrm{y}_{1}$ in $\mathrm{V}_{1}, \mathrm{z}_{m}$ in V_{m}, w_{r} in V_{r} and a in V arbitrary.
2. General and special linear, pseudo-orthogonal and symplectic Lie-graded algebras of graduation type Z_{2}
The general linear algebra $\mathrm{g} \mathrm{I}^{ \pm}(\mathrm{V}, \mathrm{K})$ is given by end ${ }^{ \pm} \mathrm{V}$ and the graded commutator. A typical element in end ${ }_{k+1} V$ is given by

$$
\begin{equation*}
G\left(x_{k}, y_{1}\right) a=\left\langle y_{1}, a>x_{k} .\right. \tag{3}
\end{equation*}
$$

A verification gives the graded commutation realations

$$
\begin{equation*}
\left[G\left(x_{k}, y_{1}\right), G\left(z_{m}, w_{r}\right)\right]_{ \pm}=<y_{1}, z_{m}>G\left(x_{k}, w_{r}\right)-(-1)^{(k+1)(m+r)}<w_{r}, x_{k}>G\left(z_{m}, y_{1}\right) . \tag{4}
\end{equation*}
$$

If V is finite dimensional and $<,>$ non-degenerate, the $\mathrm{G}($,$) generate end { }^{ \pm} \mathrm{V}$ linearly and (4) may be called the graded commutation relations of $\mathrm{g} \ddagger \pm(\mathrm{V}, \mathrm{K})$. Then obviously the trace of $G\left(x_{k}, y_{1}\right)$ is $\left\langle y_{1}, x_{k}\right\rangle$. Hence

$$
\begin{equation*}
\left.\mathrm{S}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{l}}\right)=\mathrm{G}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}\right)-(\operatorname{dimV})\right)^{-1}<\mathrm{y}_{1}, \mathrm{x}_{k}>\mathrm{id}_{v} \tag{5}
\end{equation*}
$$

is traceless and of degree $\mathrm{k}+1$:

$$
\mathrm{S}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \mathrm{a}_{0}=\tau\left(\mathrm{y}_{0}, \mathrm{a}_{0}\right) \mathrm{x}_{0}-(\operatorname{dim} V)^{-1} \tau\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right) \mathrm{a}_{0}
$$

$$
\begin{aligned}
& \mathrm{S}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{a}_{0}=-(\operatorname{dimV})^{-1} \sigma\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right) \mathrm{a}_{0} \\
& \mathrm{~S}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right) \mathrm{a}_{0}=0 \quad \mathrm{~S}\left(\mathrm{x}_{1}, \mathrm{y}_{0}\right) \mathrm{a}_{0}=\tau\left(\mathrm{x}_{0}, \mathrm{a}_{0}\right) \mathrm{x}_{1} \\
& \mathrm{~S}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \mathrm{a}_{1}=-(\operatorname{dim} \mathrm{V})^{-1} \tau\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right) \mathrm{a}_{1} \\
& \mathrm{~S}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{a}_{1}=\sigma\left(\mathrm{y}_{1}, \mathrm{a}_{1}\right) \mathrm{x}_{1}-(\operatorname{dimV})^{-1} \sigma\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right) \mathrm{a}_{1} \\
& \mathrm{~S}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right) \mathrm{a}_{1}=\sigma\left(\mathrm{y}_{1}, \mathrm{a}_{1}\right) \mathrm{x}_{0} \quad \mathrm{~S}\left(\mathrm{x}_{1}, \mathrm{y}_{0}\right) \mathrm{a}_{1}=0
\end{aligned}
$$

Dropping the terms with dim V the corresponding expressions for the $G($,$) result. A$ simple calculation gives the same graded commutation relations (4) for the $S($,), explicitely

$$
\begin{equation*}
\left[\mathrm{S}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{S}\left(\mathrm{z}_{0}, \mathrm{w}_{1}\right)\right]_{-}=\tau\left(\mathrm{y}_{0}, \mathrm{z}_{0}\right) \mathrm{S}\left(\mathrm{x}_{0}, \mathrm{w}_{1}\right) \tag{4e}
\end{equation*}
$$

$$
\left[S\left(x_{0}, y_{0}\right), S\left(z_{1}, w_{0}\right)\right]_{-}=-\tau\left(w_{0}, x_{0}\right) S\left(z_{1}, y_{0}\right)
$$

$$
\begin{equation*}
\left[S\left(x_{1}, y_{1}\right), S\left(z_{0}, w_{1}\right)\right]_{-}=-\sigma\left(w_{1}, x_{1}\right) S\left(z_{0}, w_{1}\right) \tag{4f}
\end{equation*}
$$

$$
\left[\mathrm{S}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{S}\left(\mathrm{z}_{1}, \mathrm{w}_{0}\right)\right]_{-}=\sigma\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right) \mathrm{S}\left(\mathrm{x}_{1}, \mathrm{w}_{0}\right)
$$

(4) are the graded commutation relations of $g l^{ \pm}(\mathrm{V}, \mathrm{K})$ resp. $\mathrm{sl}^{ \pm}(\mathrm{V}, \mathrm{K})$. (4a) - (4e) show that the zero-components are direct lie algebra sums of the corresponding classical lie algebras. All this can be given as well in terms of any non-degenerate bilinear form on V for which $V_{0} \oplus V_{1}$ is an orthogonal sum.

To get the Z_{2}-lie-graded pseudo-orthogonal algebra $\operatorname{der}{ }^{ \pm}(\mathrm{V},<,>)$ define

$$
\begin{equation*}
R\left(x_{k}, y_{1}\right) a=<y_{1}, a>x_{k}-(-1)^{k_{1}}<x_{k}, a>y_{1} \tag{7}
\end{equation*}
$$

with

$$
\mathrm{R}\left(\mathrm{y}_{1}, \mathrm{x}_{k}\right)=-(-1)^{k 1} \mathrm{R}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right) \text {, explicitely }
$$

$$
\begin{equation*}
\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \mathrm{a}_{0}=\tau_{0}\left(\mathrm{y}_{0}, \mathrm{a}_{0}\right) \mathrm{x}_{0}-\tau_{0}\left(\mathrm{x}_{0}, \mathrm{a}_{0}\right) \mathrm{y}_{0} \quad \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{a}_{0}=0 \tag{7a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right) \mathrm{a}_{0}=-\tau_{0}\left(\mathrm{x}_{0}, \mathrm{a}_{0}\right) \mathrm{y}_{1} \tag{7b}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \mathrm{a}_{1}=0 \quad \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{a}_{1}=\sigma_{1}\left(\mathrm{y}_{1}, \mathrm{a}_{1}\right) \mathrm{x}_{1}+\sigma_{1}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right) \mathrm{y}, \tag{7c}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right) \mathrm{a}_{1}=\sigma\left(\mathrm{y}_{1}, \mathrm{a}_{1}\right) \mathrm{x}_{0} \tag{7d}
\end{equation*}
$$

This shows that $R\left(x_{k}, y_{1}\right)$ is in end ${ }_{k+1} V$. A tedious but straightforeward verification gives

$$
\begin{align*}
& {\left[R\left(x_{k}, y_{1}\right), R\left(\mathrm{z}_{m}, \mathrm{w}_{r}\right)\right]_{ \pm}=<\mathrm{y}_{1}, \mathrm{z}_{m}>\mathrm{R}\left(\mathrm{x}_{k}, \mathrm{w}_{r}\right)-(-1)^{k 1}<\mathrm{x}_{k}, \mathrm{z}_{m}>\mathrm{R}\left(\mathrm{y}_{1}, \mathrm{w}_{r}\right)-(-1)^{m r}} \tag{8}\\
& <\mathrm{y}_{1}, \mathrm{w}_{r}>\mathrm{R}\left(\mathrm{x}_{k}, \mathrm{z}_{m}\right)+(-1)^{k, 1}(-1)^{m r}<\mathrm{x}_{k}, \mathrm{w}_{r}>\mathrm{R}\left(\mathrm{y}_{1}, \mathrm{z}_{m}\right) .
\end{align*}
$$

The following inspection of the various special choices of the indices shows that these are graded commutation ralations of a lie-graded sub-algebra of $\mathrm{gl}{ }^{ \pm}(\mathrm{V}, \mathrm{K})$:

$$
\begin{align*}
{\left[R\left(x_{0}, y_{0}\right), R\left(z_{0}, w_{0}\right)\right]_{-} } & =\tau_{0}\left(y_{0}, z_{0}\right) R\left(x_{0}, w_{0}\right)-\tau_{0}\left(x_{0}, z_{0}\right) R\left(y_{0}, w_{0}\right) \tag{8a}\\
& -\tau_{0}\left(y_{0}, w_{0}\right) R\left(x_{0}, z_{0}\right)+\tau_{0}\left(x_{0}, w_{0}\right) R\left(y_{0}, z_{0}\right)
\end{align*}
$$

together with the first equation (7a) gives the wellknown commutation relations of the (finite-dimensional) pseudo-orthogonal lie algebra der $\left(\mathrm{V}_{0}, \tau_{0}\right)=\left\{\mathrm{A} \in \mathrm{end}^{\mathrm{V}} \mathrm{V}_{0} / \tau_{0}\left(\mathrm{Ax}_{0}, \mathrm{y}_{0}\right)\right.$ $\left.+\tau_{0}\left(\mathrm{x}_{0}, \mathbf{A} \mathrm{y}_{0}\right)=0\right\}$, (Jacobson, 1966), p. 232.

$$
\begin{align*}
{\left[\mathrm{R}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{R}\left(\mathrm{z}_{1}, \mathrm{w}_{1}\right)\right]_{-} } & =\sigma_{1}\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right) \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right)+\sigma_{1}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right) \mathrm{R}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right) \tag{8b}\\
& +\sigma_{1}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right) \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right)+\sigma_{1}\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right) \mathrm{R}\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right)
\end{align*}
$$

together with the second equation in (7c) gives the commutation relations of the symplectic algebra der $\quad\left(\mathrm{V}_{1}, \sigma_{1}\right)=\left\{\mathrm{D} \in \mathrm{end}_{1} / \sigma_{1}\left(\mathrm{D} \mathrm{x}_{1}, \mathrm{y}_{1}\right)+\sigma_{1}\left(\mathrm{x}_{1}, \mathrm{D} \mathrm{y}_{1}\right)=0 \quad\right.$ for all $\left.\mathrm{x}_{1}, \mathrm{y}_{1} \in \mathrm{~V}_{1}\right\}$.

$$
\begin{equation*}
\left[R\left(x_{0}, y_{0}\right), R\left(z_{1}, w_{1}\right)\right]-=0 \tag{8c}
\end{equation*}
$$

together with (a) and (b) shows that the $R\left(x_{0}, y_{0}\right)$ and $R\left(x_{1}, y_{1}\right)$ span the direct lie algebra sum of the pseudo-orthogonal lie algebra on $\left(\mathrm{V}_{0}, \tau_{0}\right)$ and the sympletic algebra on $\left(\mathrm{V}_{1}, \sigma_{1}\right)$. In addition

$$
\begin{align*}
& {\left[\mathbf{R}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right), \mathbf{R}\left(\mathrm{z}_{0}, \mathrm{w}_{1}\right)\right]_{+}=-\tau_{0}\left(\mathrm{x}_{0}, \mathrm{z}_{0}\right) \mathbf{R}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right)-\sigma_{1}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right) \mathbf{R}\left(\mathrm{x}_{0}, \mathrm{z}_{0}\right)} \tag{8d}\\
& {\left[\mathbf{R}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathbf{R}\left(\mathrm{z}_{0}, \mathrm{w}_{1}\right)\right]_{-}=\tau_{0}\left(\mathrm{y}_{0}, \mathrm{z}_{0}\right) \mathbf{R}\left(\mathrm{x}_{0}, \mathrm{w}_{1}\right)-\tau_{0}\left(\mathrm{x}_{0}, \mathrm{z}_{0}\right) \mathbf{R}\left(\mathrm{y}_{0}, \mathbf{w}_{1}\right)} \tag{8e}\\
& {\left[\mathbf{R}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathbf{R}\left(\mathrm{z}_{0}, \mathrm{w}_{1}\right)\right]_{-}=-\sigma_{1}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right) \mathbf{R}\left(\mathrm{x}_{1}, \mathrm{z}_{0}\right)-\sigma_{1}\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right) \mathrm{R}\left(\mathrm{y}_{1}, \mathrm{z}_{0}\right) .} \tag{8f}
\end{align*}
$$

A verification shows that $R\left(x_{k}, y_{1}\right) \in \operatorname{der}_{k+1}(V,<,>)$, i.e. that (2) holds for $R\left(x_{k}, y_{1}\right)$ $=D^{(k+1)}$. If V is finite-dimensional and $<,>$ non-degenerate dimensional arguments show that the $R($,$) span \operatorname{der}^{ \pm}(V,<,>)$. Then the trace of $R($,$) vanishes. Hence the$ equations (8) are the graded commutation relations of the Z_{2}-graded ortho-symplectic algebra, described also in (Pais and Rittenberg, 1975).

If V is finite-dimensional over $\mathrm{K}=\mathrm{R}$ there is a natural basis in which the matrix of $<,>$ is $\mathrm{I}_{<,>}=\operatorname{diag}\left(\mathrm{I}_{\tau}, \mathrm{J}_{\sigma}\right)$ where $\mathrm{I}_{\tau}=\operatorname{diag}\left(\mathrm{id}_{p},-\mathrm{id}_{q}\right)$ with $\mathrm{p}+\mathrm{q}=\mathrm{n}_{0}=\operatorname{dim} \mathrm{V}_{0}$ and $\mathrm{J}_{\sigma}=$ antidiag ($-\mathrm{id}_{d}, \mathrm{id}_{d}$) (if σ is non-degenerate which implies $2 \mathrm{~d}=\mathrm{n}_{1}=\operatorname{dim} V_{1}$). The matrix of $\mathrm{D}^{(i)}$ in (2) then is

$$
\left(\begin{array}{cc}
\mathrm{A} & \text { B } \tag{9}\\
-\mathrm{J}_{\sigma} \mathrm{B}_{\tau} \mathrm{I}_{\tau} & \mathrm{D}
\end{array}\right) \text { with } \mathrm{A}^{t} \mathrm{I}_{\tau}+\mathrm{I}_{\tau} \mathrm{A}=0 \text { and } \mathrm{D}^{t} \mathrm{~J}_{\sigma}+\mathrm{J}_{\sigma} \mathrm{D}=0,
$$

where A is a square n_{0} matrix, D a square n_{1} matrix and B an arbitrary rectangular matrix of n_{0} rows and n_{1} columns. The dimension of the real ortho-symplectic algebra is $\frac{1}{2} n(n+1)-n_{0}$ with $n=n_{0}+n_{1}=\operatorname{dimV}$. Since the concept of a graded (orthogonal) curvature structure, to be discussed in the last section, has a graded-symplectic analog, we add the corresponding facts on the Z_{2}-graded symplectic algebra $\operatorname{der}^{ \pm}(V, k, \ngtr)$ although it results from $\operatorname{der}^{ \pm}(\mathrm{V},<,>)$ by interchanging the indices 0 and 1 , i.e. by taking the derived graduation of Δ by means of the nontrivial automorphism of Z_{2}. described in example (2) chap. II 11.1 of (Bourbaki, 1974). The typical linear transformation in $\operatorname{der}_{k+1}(V, \not, \not, \not)$ is defined by

$$
\mathrm{P}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right) \mathrm{a}=\nless \mathrm{y}_{1}, \mathrm{a} \ngtr \mathrm{x}_{k}+(-1)^{k_{1}} \nless \mathrm{x}_{k}, \mathrm{a} \ngtr \mathrm{y}_{1}
$$

with $P\left(y_{1}, x_{k}\right)=(-1)^{k_{1}} P\left(x_{k}, y_{1}\right)$ and vanishing trace. Their graded commutation relations are (Tilgner, 1977 a).
$\left[\mathrm{P}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right), \mathrm{P}\left(\mathrm{z}_{m}, \mathrm{w}_{r}\right)\right]_{ \pm}=k \mathrm{y}_{1}, \mathrm{z}_{m} \ngtr \mathrm{P}\left(\mathrm{x}_{k}, \mathrm{w}_{r}\right)+(-1)^{k_{1}} \nless \mathrm{x}_{k}, \mathrm{z}_{m} \ngtr \mathrm{P}\left(\mathrm{y}_{1}, \mathrm{w}_{r}\right)+(-1)^{m r} \nless \mathrm{y}_{1}, \mathrm{w}_{r}$ $\ngtr \mathrm{P}\left(\mathrm{x}_{k}, \mathrm{z}_{m}\right)+(-1)^{k 1}(-1)^{m r} \nless \mathrm{x}_{k}, \mathrm{w}_{r} \ngtr \mathrm{P}\left(\mathrm{y}_{1}, \mathrm{z}_{m}\right)$.

Denoting the matrix of k, \ngtr by $I_{\Varangle} \ngtr \operatorname{diag}\left(\mathrm{J}_{\sigma}, \mathrm{I}_{\tau}\right)$, the typical matrix $\mathrm{D}^{(i)}$ in (2) now is $\left(\begin{array}{cc}D & J_{0} B^{\prime} I_{r} \\ B & A\end{array}\right)$ with the same conditions on A, B, D as in (9).

3. Z_{2}-graded pseudo-unitary algebras

Let us first describe the ordinary speudo-unitary Lie algebra $u(p, q)$ on a finitedimensional complex vector space U : It is the space of complex square $p+q$ matrices \mathbf{M} leaving invariant the nondegenerate hermitian form $\ll x, y \gg=x^{t} I_{\tau} y^{*}$, where I_{τ} $=\operatorname{diag}\left(\mathrm{id}_{p},-\mathrm{id}_{q}\right)$, which means $\ll \mathbf{M x}, \mathbf{y} \gg+\ll \mathbf{x}, \mathbf{M y} \gg=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ or in matrix form $M^{\prime} I_{\tau}+I_{r} M=0 . M=A+i B \in u(p, q)$ is equivalent to $A^{\prime} I_{\tau}+I_{\tau} A=0$ and $B^{\prime} I_{\tau}$
$=I_{\tau} B$. Consider on the real $2 n$-dimensional vector space V with $n=p+q$, a skew bilinear form π and a symmetric one $\hat{\tau}$ with matrices $\left(\begin{array}{cc}0 & -I_{\tau} \\ I_{\tau} & 0\end{array}\right)$ and $\left(\begin{array}{ll}I_{\tau} & 0 \\ 0 & I_{\tau}\end{array}\right)$ resp.. It is well known that

$$
\mathbf{M}=\mathbf{A}+\mathrm{i} \mathbf{B} \left\lvert\, \rightarrow\left(\begin{array}{cc}
\mathbf{A} & -\mathbf{B} \tag{10}\\
\mathbf{B} & \mathbf{A}
\end{array}\right)=: \hat{\mathbf{M}}\right.
$$

is a Lie algebra isomorphism of $u(p, q)$ onto the space of real square $2 n$ matrices $\hat{\mathrm{M}}$ subject to $\hat{M}^{1} \mathrm{I}_{\tau}+\mathrm{I}_{\mathrm{t}} \hat{\mathrm{M}}=0=\hat{\mathrm{M}}^{\mathrm{I}} \mathrm{J}_{\sigma}+\mathrm{J}_{\sigma} \hat{\mathrm{M}}$, i.e. onto the intersection of so ($2 \mathrm{p}, 2 \mathrm{p} ; \mathrm{R}$) with the symplectic algebra on (\mathbf{V}, σ) (the latter being conjugate but not necessarily equal to $\mathrm{sp}(2 \mathrm{n}, \mathrm{R})$). This real version of $\mathrm{u}(\mathrm{p}, \mathrm{q})$ will be denoted by $\mathrm{u}_{r}(\mathrm{p}, \mathrm{q})$ in the following. Now the matrix $\mathrm{J}=\left(\begin{array}{cc}0 & -\mathrm{id}_{n} \\ \mathrm{id}_{n} & 0\end{array}\right)$ with $\mathrm{J}^{2}=-\mathrm{id}_{2 n}$ is a complex structure on V such that given two of the three structures $\hat{\tau}, \sigma$, J, the third is determined uniquely, explicitely

$$
\begin{array}{lr}
\dot{\tau}(\mathrm{J}, \mathbf{z})=-\sigma(\mathbf{x}, \mathbf{z}) & \sigma(\mathrm{J} \mathbf{x}, \mathbf{z})=\hat{\tau}(\mathbf{x}, \mathbf{z}) \tag{11}\\
\dot{\tau}(\mathrm{x}, \mathrm{~J} \mathrm{z})=\sigma(\mathbf{x}, \mathbf{z}) & \sigma(\mathbf{x}, \mathrm{J} \mathrm{z})=-\hat{\tau}(\mathbf{x}, \mathbf{z})
\end{array}
$$

J defines a Cartan decomposition of the symplectic algebra on (\mathbf{V}, σ) into the two eigenspaces of eigenvalues 1 and -1 of the involutive automorphism $\hat{\mathrm{M}} \mid \rightarrow \mathrm{JM} \mathrm{J}^{-1}$ of the form $2 \hat{\mathrm{M}}=\hat{\mathrm{M}}+\mathrm{J} \hat{M} \mathrm{~J}^{-1} \oplus \hat{\mathrm{M}}-\mathrm{J} \hat{\mathrm{M}} \mathrm{J}^{-1}$ where the first eigenspace of eigenvalue 1 is $u_{r}(p, q)$. The element $R(x, y)$ of so $(2 p, 2 q ; R)$ defined in the first equation in $(7 a)$ hence can be used to define a typical element $\mathrm{U}(\mathrm{x}, \mathrm{y})$ of $\mathrm{u}_{r}(\mathrm{p}, \mathrm{q})$ by

$$
\begin{equation*}
\mathrm{U}(\mathrm{x}, \mathrm{y}) \mathbf{a}=\left\{\mathrm{R}(\mathbf{x}, \mathbf{y})+\mathrm{JR}(\mathrm{x}, \mathbf{y}) \mathrm{J}^{-1}\right\} \mathbf{a}=\hat{\tau}(\mathbf{y}, \mathbf{a}) \mathbf{x}-\hat{\tau}(\mathbf{x}, \mathrm{a}) \mathbf{y}+\sigma(\mathrm{a}, \mathrm{y}) \mathrm{J} \mathrm{x}-\sigma(\mathrm{a}, \mathbf{x}) \mathrm{J} \mathbf{y} \tag{12}
\end{equation*}
$$

with $U(y, x)=-U(x, y)$ and the commutation relations

$$
\begin{align*}
& {[\mathrm{U}(\mathrm{x}, \mathrm{y}), \mathrm{U}(\mathrm{z}, \mathrm{w})]=\{\dot{\tau}(\mathrm{y}, \mathrm{z}) \mathrm{U}(\mathrm{x}, \mathrm{w})+\sigma(\mathrm{z}, \mathrm{y}) \mathrm{U}(\mathrm{Jx}, \mathrm{w})\}\{\dot{\tau}(\mathrm{x}, \mathrm{z}) \mathrm{U}(\mathrm{y}, \mathrm{w})} \tag{13}\\
& +\sigma(\mathbf{z}, \mathbf{x}) \mathrm{U}(\mathrm{~J} \mathbf{y}, \mathrm{w})\}-\{\tau(\mathrm{y}, \mathrm{w}) \mathrm{U}(\mathrm{x}, \mathrm{z})+\sigma(\mathrm{w}, \mathrm{y}) \mathrm{U}(\mathrm{Jx}, \mathrm{z})\}+\{\tau(\mathrm{x}, \mathrm{w}) \mathrm{U}(\mathrm{y}, \mathrm{z}) \\
& +\sigma(\mathbf{w}, \mathbf{x}) \mathbf{U}(\mathbf{J} \mathbf{y}, \mathbf{z})\}
\end{align*}
$$

If V is finite-dimensional the $\mathrm{U}(\mathrm{x}, \mathrm{y})$ span $\mathrm{u}_{r}(\mathrm{p}, \mathrm{q})$.
To get Z_{2}-graded generalization of $\mathrm{u}(\mathrm{p}, \mathrm{q})$ on $\mathrm{V}=\mathrm{V}_{0} \oplus \mathrm{~V}_{1}$, we introduce besides $<$, $>$ and $K,>$ a complex structure $\mathrm{J} \in e \mathrm{en}_{0} \mathbf{V}$, i.e. $\mathrm{J}^{2}=-\mathrm{id}$, which is the diagonal of two complex structures J_{0} on $\mathbf{V}_{0}, \mathrm{~J}_{1}$ on \mathbf{V}_{1} related to $\hat{\tau}_{0}$ and $\sigma_{0}, \hat{\tau}_{1}$ and σ_{1} as indicated in (11).

Hence

$$
\begin{align*}
& \left.k \mathrm{X}_{\mathrm{k}}, \mathrm{~J} z_{m} \ngtr=-(-1)^{k m}<\mathrm{X}_{\mathrm{k}}, \mathrm{z}_{m}\right\rangle=-\left\langle\mathrm{z}_{m}, \mathrm{x}_{k}\right\rangle \\
& \left\langle\mathrm{Jx}_{k}, \mathrm{z}_{m} \ngtr=(-1)^{)^{k}}\left\langle\mathrm{X}_{\mathrm{k}}, \mathrm{z}_{\mathrm{m}}\right\rangle=\left\langle\mathrm{z}_{m}, \mathrm{x}_{\mathbf{k}}\right\rangle\right. \tag{14}
\end{align*}
$$

$$
\begin{aligned}
& <\mathrm{Jx}_{k}, \mathrm{z}_{m}>=-(-1)^{k^{m}} \nless \mathrm{x}_{\mathbf{k}}, \mathrm{z}_{\boldsymbol{m}} \ngtr=\left\langle\mathrm{Z}_{m}, \mathrm{x}_{\mathbf{k}} \ngtr\right.
\end{aligned}
$$

The Z_{2}-Lie-graded pseudo-unitary algebra $\mathrm{u}_{r}^{ \pm}(\mathrm{V},<,>, \mathrm{J})$ is now defined as $\operatorname{der}^{ \pm}(\mathrm{V},<$, $>) \cap \operatorname{der}^{ \pm}(V, \nless, \ngtr)$. Again a Cartan decomposition of $\operatorname{der}^{ \pm}(V, \nless, \ngtr)$ can be used to construct its standard linear transformation: J induces an involutive automorphim of $\operatorname{der}^{ \pm}(\mathrm{V}, \nless, \gg)$ by

$$
\begin{equation*}
\mathrm{J}: \mathrm{A}^{(i)} \mid \rightarrow(-1)^{i} \mathrm{~J}^{(i)} \mathrm{J}^{-1}, \quad \mathrm{~A}^{(i)} \in \operatorname{der}(\mathrm{V}, \nless, \ngtr), \tag{15}
\end{equation*}
$$

and $u_{r} \ddagger(\mathrm{~V},<,>, \mathrm{J})$ is exactly the eigenspace of eigenvalue 1 . Hence

$$
\begin{align*}
& U\left(x_{k}, y_{1}\right)=R\left(x_{k}, y_{1}\right)+(-1)^{k+1} J R\left(x_{k}, y_{1}\right) J^{-1}, \tag{16}\\
& U\left(x_{k}, y_{1}\right) a=\nless y_{1}, a \ngtr x_{k}-(-1)^{k} \nless x_{k}, a \ngtr y_{1} \\
& +(-1)^{k+1} \nless a, y_{1} \ngtr J x_{k}-(-1)^{k+1}(-1)^{\mathrm{k} 1} \nless \mathrm{a}, x_{k} \ngtr J y_{1} .
\end{align*}
$$

with $U\left(y_{1}, x_{k}\right)=-(-1)^{k 1} U\left(x_{k}, y_{1}\right)$ is in $u_{r}^{ \pm}(V, \notin, \ngtr, J)$. Using the $<,>-$ and $\nless, \ngtr-$ orthogonality of $\mathrm{V}_{0} \oplus \mathrm{~V}_{1}$ a simple but tedious calculation gives the graded commutation relations

$$
\begin{align*}
& {\left[U\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{U}\left(\mathrm{z}_{m}, \mathrm{w}_{r}\right)\right]_{ \pm}=\left\{<\mathrm{y}_{1}, \mathrm{z}_{m}>\mathrm{U}\left(\mathrm{x}_{k}, \mathrm{w}_{r}\right)+(-1)^{k+1} \nless \mathrm{z}_{m}, \mathrm{y}_{1} \ngtr \mathrm{U}\left(\mathrm{~J} \mathrm{x}_{k}, \mathrm{w}_{r}\right)\right\}-} \tag{17}\\
& (-1)^{k}\left\{<\mathrm{x}_{k}, \mathrm{z}_{m}>\mathrm{U}\left(\mathrm{y}_{1}, \mathrm{w}_{r}\right)+(-1)^{k+1} \nless \mathrm{z}_{m}, \mathrm{x}_{k} \ngtr \mathrm{U}\left(\mathrm{~J} \mathrm{y}_{1}, \mathrm{w}_{r}\right)\right\}-(-1)^{m r}\left\{<\mathrm{y}_{1}, \mathrm{w}_{r}>\right. \\
& \left.\mathrm{U}\left(\mathrm{x}_{k}, \mathrm{z}_{m}\right)+(-1)^{k+1} \nless \mathrm{w}_{r}, \mathrm{y}_{1} \ngtr \mathrm{U}\left(\mathrm{Jx}_{k}, \mathrm{z}_{m}\right)\right\}+(-1)^{k+}(-1)^{m r} \quad\left\{<\mathrm{x}_{k}, \mathrm{w}_{r}>\mathrm{U}\left(\mathrm{y}_{1}, \mathrm{z}_{m}\right)\right. \\
& \left.+(-1)^{k+1} \nless \mathrm{w}_{r}, \mathrm{x}_{k} \ngtr \mathrm{U}\left(\mathrm{~J} \mathrm{y}_{1}, \mathrm{z}_{m}\right)\right\} .
\end{align*}
$$

If V is finite-dimentional the $\mathrm{U}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right)$ span $\mathrm{u}_{r}^{ \pm}(\mathrm{V},<,>, \mathrm{J})$. To verify that (17) are graded commutation relations of a graded algebra the various special choices of the indices must be discussed: The 0-0-case is (13), which together with

$$
\begin{align*}
& {\left[U\left(x_{1}, y_{1}\right), U\left(\mathrm{z}_{1}, \mathrm{w}_{1}\right)\right]_{-}=\sigma_{1}\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right) \mathrm{U}\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right)+\hat{\tau}_{1}\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right) \mathrm{U}\left(\mathrm{~J}_{1} \mathrm{x}_{1}, \mathrm{w}_{1}\right)} \\
& -\left\{\sigma_{1}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right) \mathrm{U}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right)+\hat{\tau}_{1}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right) \mathrm{U}\left(\mathrm{~J}_{1} \mathrm{y}_{1}, \mathrm{w}_{1}\right)\right\} \tag{17~b}\\
& -\left\{\sigma_{1}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right) \mathrm{U}\left(\mathrm{x}_{1}, \mathrm{z}_{1}\right)+\hat{\tau}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right) \mathrm{U}\left(\mathrm{~J}_{1} \mathrm{x}_{1}, \mathrm{z}_{1}\right)\right\} \\
& +\sigma_{1}\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right) \mathrm{U}\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right)+\hat{\tau}_{1}\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right) \mathrm{U}\left(\mathrm{~J}_{1} \mathrm{y}_{1}, \mathrm{z}_{1}\right)
\end{align*}
$$

$$
\begin{equation*}
\left[\mathrm{U}\left(\mathbf{x}_{0}, \mathrm{y}_{0}\right), \mathrm{U}\left(\mathrm{z}_{1}, \mathrm{w}_{1}\right)\right]_{-}=0 \tag{17c}
\end{equation*}
$$

shows that the 0 -component of this algebra is the direct lie algebra sum of the pseudounitary lie algebra ($\mathrm{V}_{0}, \hat{\tau}_{0}, \sigma_{0}$) and (as will be shown below) that on ($\mathrm{V}_{1}, \hat{\tau}_{1}, \sigma_{1}$). The anticommutation relations are

$$
\begin{align*}
& {\left[\mathrm{U}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right), \mathrm{U}\left(\mathrm{z}_{0}, \mathrm{w}_{1}\right)\right]_{+}=-\hat{\tau}_{0}\left(\mathrm{x}_{0}, \mathrm{z}_{0}\right) \mathrm{U}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right)-\sigma_{0}\left(\mathrm{x}_{0}, \mathrm{z}_{0}\right) \mathrm{U}\left(\mathrm{~J}_{1} \mathrm{y}_{1}, \mathrm{w}_{1}\right)} \tag{17d}\\
& -\sigma_{1}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right) \mathrm{U}\left(\mathrm{x}_{0}, \mathrm{z}_{0}\right)+\hat{\tau}_{1}\left(\mathrm{y}_{1}, \mathrm{w}_{1}\right) \mathrm{U}\left(\mathrm{~J}_{0} \mathrm{x}_{0}, \mathrm{z}_{0}\right),
\end{align*}
$$

and the two remaining commutation relations (e) and (f) are of similar type such that $\left[\mathrm{U}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{U}\left(\mathrm{z}_{0}, \mathrm{w}_{1}\right)\right]$ - and $\left[\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{U}\left(\mathrm{z}_{0}, \mathrm{w}_{1}\right)\right]$ - are linear combinations of the $\mathrm{U}\left(\mathrm{a}_{0}, \mathrm{~b}_{1}\right)$, i.e. in the 1 -component of the algebra. It remains to identify the space spanned by the $\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ in the o-component as the pseudo-unitary Lie algebra on $\mathrm{V}_{1}: \mathrm{U}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ in (16) and (17b) is the pseudo-unitary standard transformation $\mathrm{U}(\mathrm{Jx}, \mathrm{y})$ in (12) and an easy calculation gives from (17b) the commulation relations (13) for the $U\left(J_{1} x_{1}, y_{1}\right)$.

In a basis of a finite-dimensional V in which $\hat{\tau}_{i}$ has the matrix I_{ri} and σ_{i} the matrix $\mathrm{J}_{\sigma_{i}}$, the elements of a matrix form of $\left.\mathrm{u}_{\mathrm{r}}^{ \pm}(\mathrm{V},<\rangle, \mathrm{J},\right)$ are

$$
\left(\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \tag{18}\\
-\mathrm{J}_{\sigma 1} \mathrm{~B}^{t} I_{\hat{r}} & \mathrm{D}
\end{array}\right)
$$

where A is a square $2 n_{0}$ matrix subject to $A^{t} l_{\hat{\tau}_{0}}+I_{\hat{r}_{0}} A=0=A^{t} J_{\sigma_{0}}+J_{\sigma_{0}} A$, D a square $2 n_{1}$ matrix subject to $D^{t} I_{r}+I_{r_{1}} D=0=D^{t} J_{\sigma_{1}}+J_{\sigma_{1}} D$, and B a rectangular matrix with $2 n_{0}$ rows and $2 n_{1}$ columns subject to the equation $J_{\sigma_{n}} B I_{r_{1}}=-I_{i 0} B J_{\sigma_{1}}$. This leaves only $2 n_{0} n_{1}$ matrix elements of B independent. Hence the real dimension of the graded pseudo-unitary algebra is $\left(n_{0}+n_{1}\right)^{2}$. The involutive automorphism (15) of $\operatorname{der}^{ \pm}(\mathrm{V}, \nless$, $>$) is in matrix form

$$
\mathrm{J}:\left(\begin{array}{cc}
\mathrm{D} & \mathrm{~J}_{\sigma 0} \mathrm{~B}^{\prime} \mathrm{I}_{\mathrm{r}_{1}} \\
\mathrm{~B} & \mathrm{~A}
\end{array}\right) \left\lvert\, \rightarrow\left(\begin{array}{cc}
\mathrm{J}_{0} \mathrm{DJ}_{0}^{-1} & -\mathrm{J}_{0} \mathrm{~J}_{\sigma 1} \mathrm{~B}^{\prime} \mathrm{I}_{\mathrm{i}_{1}} \mathrm{~J}_{1}^{-1} \\
-\mathrm{J}_{1} \mathrm{BJ}_{0}^{-1} & \mathrm{~J}_{1} \mathrm{AJ}_{1}^{-1}
\end{array}\right)\right.
$$

It remains to generalize some well known embeddings of classical Lie algebras, for instance $s u(p, q), g l(n, K)$ in $s p(2 n, K)$ and $s o(p, q ; R)$ in $u_{r}(p, q)$.
4. Z_{2}-graded curvature structure

Let V be finite-dimensional, $<,>$ a graded-symmetric bilinear form as above. $\mathrm{A} \mathrm{Z}_{2}$ -
graded curvature structure on $(\mathrm{V},<,>)$ is defined as the linear continuation of a bilinear mapping

$$
\mathrm{C}: \mathrm{V}_{k} \times \mathrm{V}_{1} \rightarrow \mathrm{end}_{k+1} \mathrm{~V}
$$

subject to the axioms

$$
\begin{equation*}
C\left(y_{1}, x_{k}\right)=-(-1)^{k 1} C\left(x_{k}, y_{1}\right) \tag{GC.1}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{k m} C\left(x_{k}, y_{1}\right) z_{m}+(-1)^{1 m} C\left(z_{m}, x_{k}\right) y_{1}+(-1)^{k 1} C\left(y_{1}, z_{m}\right) x_{k}=0 \tag{GC.2}
\end{equation*}
$$

(graded Bianchi identity)
(GC.3)

$$
<\mathrm{C}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right) \mathrm{z}_{m}, \mathrm{w}_{r}>+(-1)^{(k+1) m}<\mathrm{z}_{m}, \mathrm{C}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right) \mathrm{w}_{r}>=0 .
$$

(GC.3) obviously means $C\left(x_{k}, y_{1}\right) \in \operatorname{der}_{k+1}(V,<,>)$. C induces a linear mapping of degree zero of $\mathrm{V} \oplus \mathrm{V}$ with its total graduation Z_{2}, (Bourbaki, 1974), remark inchap. II1 11.5 , into end $\pm \mathrm{V}$. The trivial curvature structure on $(\mathrm{V},<,>)$ is R defined in (7). Denoting the left hand side of (GC.2) by

$$
\begin{aligned}
& \sum\left(\mathrm{x}_{k}, \mathrm{y}_{1}, \mathrm{z}_{m}\right) \text { we have } 0=(-1)^{m r}<\sum\left(\mathrm{x}_{k}, \mathrm{y}_{1}, \mathrm{z}_{m}\right), \mathrm{w}_{r}>- \\
& (-1)^{k(m+r)}<\sum\left(\mathrm{y}_{1}, \mathrm{w}_{r}, \mathrm{x}_{k}\right), \mathrm{z}_{m}>-(-1)^{k+1 m+k_{r}}<\sum\left(\mathrm{w}_{r}, \mathrm{z}_{m}, \mathrm{y}_{1}\right), \mathrm{x}_{k}>+ \\
& (-1)^{1(m+r)}<\sum\left(\mathrm{z}_{m}, \mathrm{x}_{k}, \mathrm{w}_{r}\right), \mathrm{y}_{1}>=(-1)^{(\mathrm{k}+r) m}<\mathrm{C}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right) \mathrm{z}_{m}, \mathrm{w}_{r}>- \\
& (-1)^{k m}<\mathrm{C}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right) \mathrm{w}_{r}, \mathrm{z}_{m}>-(-1)^{k^{k}+{ }_{k r}+1 m+1 r}<\mathrm{C}\left(\mathrm{w}_{r}, \mathrm{z}_{m}\right) \mathrm{y}_{1}, \mathrm{x}_{k}>+ \\
& (-1)^{k r+1 r+1 m}<\mathrm{C}\left(\mathrm{w}_{r}, \mathrm{z}_{m}\right) \mathrm{x}_{k}, \mathrm{y}_{1}>, \text { hence }
\end{aligned}
$$

$$
\begin{equation*}
<\mathrm{C}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right) \mathrm{z}_{m}, \mathrm{w}_{r}>=(-1)^{(k+1)(m+r)}<\mathrm{C}\left(\mathrm{z}_{m}, \mathrm{w}_{r}\right) \mathrm{x}_{k}, \mathrm{y}_{1}>. \tag{GC.4}
\end{equation*}
$$

This equation shows that C is a Z_{2}-graded generalization of Singer and Thorpe's riemannian curvature structure studied by (Kowalski, 1973; Kulkarni, 1968 and 1970; Nomizu, 1972) and in a little different notation by (Gray, 1971; Marcus, 1975 chap. 4, and Singer and Thorpe 1968). Let curv(V, <, >) denote the linear space spanned by the curvature structures on $V(<,>)$. It remains to generalize Singer and Thorpe's direct decomposition given by (Nomizu, 1972 and Singer and Thorpe, 1968) to curv (V, $<,>$). Given Cecurv (V, $<,>$) we call

$$
\begin{equation*}
\left[\mathrm{A}^{(i)} \mathrm{C}\left(\mathrm{z}_{m}, \mathrm{w}_{r}\right)\right]_{ \pm}=\mathrm{C}\left(\mathrm{~A}^{(i)} \mathrm{z}_{m}, \mathrm{w}_{r}\right)-(-1)^{m r} \mathrm{C}\left(\mathrm{~A}^{(i)} \mathrm{w}_{r}, \mathrm{z}_{m}\right) \tag{19}
\end{equation*}
$$

Cartan's condition for $\mathrm{A}^{(i)} \in \operatorname{der}_{i}(\mathrm{~V},<,>)$. If it is satisfied for all $\mathrm{C}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}\right)=\mathrm{A}^{(i)}$, i.e. $\mathrm{i}=\mathrm{k}$ +1 , then the image of C is a subalgebra of $\operatorname{der}^{+}(\mathrm{V},<,>)$, if it is satisfied for all $A^{(i)} \in \operatorname{der}_{i}(V,<,>)$ then this image even is an ideal. Choosing $A^{(i)}=C\left(x_{k}, y_{1}\right)$ and $C=R$ Cartan's condition reduces to the graded commutation relations (8) of the orthosymplectic algebra.

The standard transformations $\mathrm{U}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right)$ of $\mathrm{u} \frac{ \pm}{r}(\mathrm{~V},<,>, \mathrm{J})$ are J-dependent curvature structures on ($\mathrm{V},<,>$) which may be called J-pseudo-skewhermitian. Again Cartan's condition for such a U reduces to the graded commutation relations (17).

The following is a graded generalization of a result due to E. Cartan, described for instance in (Helgason 1962) chap. IV. Given $\mathbf{C \in c u r v}(V,<,>)$ we define a C-dependent graded skew algebra composition on $\underset{i \in \Delta}{\oplus}\left(C\left(V_{k}, V_{1}\right) \oplus V_{i}\right), i=k+1$, by

$$
\begin{align*}
& {\left[A^{(k)} \oplus x_{k}, B^{(1)} \oplus y_{1}\right]_{ \pm}=\frac{1}{2}\left(A^{(k)} B^{(1)}-(-1)^{k 1} B^{(1)} A^{(k)}\right)-C\left(x_{k}, y_{1}\right) \oplus A^{(k)} y_{1}-} \tag{20}\\
& (-1)^{k 1} B^{(1)} x_{k}
\end{align*}
$$

and linear continuation.
(21) Lemma: (20) is a lie-graded algebra composition if and only if (19) holds for all $\mathrm{A}^{(i)}$ $=\mathrm{C}\left(\mathrm{x}_{k}, \mathrm{y}_{1}\right)$ and $\mathrm{i}=\mathrm{k}+1$. This algebra is called the standard embedding of C. Lemma (21)
 $\oplus_{0,1}^{\oplus}\left(\mathrm{u}^{ \pm}(\mathrm{V},<,>, \mathrm{J})_{i} \oplus \mathrm{~V}_{i}\right)$ in the pseudo-unitary case. The dimension of the latter obviously is $n(n+1)$. The linear mapping $\omega: A^{(i)}+v_{i} \mid \rightarrow A^{(i)}-v_{i}$ defines an involutive automorphism of these algebras whose eigenspace of eigenvalue \pm is exactly the liegraded subalgebra $\underset{i=k+1}{\oplus} \mathrm{C}\left(\mathrm{V}_{\mathrm{k}}, \mathrm{V}_{1}\right)$ resp. the subspace V . One verifies that the eigenspace of eigenvalue -1 is closed with respect to the graded double commutator, i.e. $\left[\left[\mathrm{V}_{\mathrm{k}}, \mathrm{V}_{1}\right] \pm, \mathrm{V}_{\mathrm{m}}\right] \mathbb{t}$ $c \mathrm{~V}_{\mathrm{k}++\mathrm{m}}$. Indeed there is a graded generalization of Lie triples, which are exactly of this type, such that the well know relation with Lie algebras remains valid. Cartan's condition for C then becomes one of the three axioms of a Z_{2}-graded generalized lie triple, written in terms of the left multiplication $C(x, y) a-[x, y, a] \pm$ (see Tilgner, 1977b).

It remains to generalize the results on riemennian curvature, if possible including torsion, to the Z_{2}-graded case, and especially to the induced symplectic curvature on $\left(\mathrm{V}_{1}, \sigma_{1}\right)$.

References

Berezin, F.A. and G.I. Kac (1971) Lie Groups with Commuting and Anticommuting Parameters, Math. USSR Sb., 11, 311-325.

Bourbaki, N., (1974) Algebra I, Reading Mass., Addison-Wesley.
Corwin, L, Y. Ne'eman and S. Sternberg (1975) Graded Lie Algebras in Mathematics and Physics (Bose-Fermi Symmetry), Rev. Mod. Phys. 47, 573-603.

Djokovic, Z. (1976) Classification of some 2-graded Lie Algebras. J. Pure and Appl. Alg., 7, 217-230.
Freund, P.G.O. and I. Kaplansky (1976) Simple Supersymmetries. J. Math. Phys., 17, 288-231.
Gerstenhaber, M. (1973) The Cohomology Structure of an Associative Algebras, Ann. Math., 78, 267 288.

Gray, A. (1971) Invariants of Curvature Operators of Four-Dimensional Riemannian Manifolds. Proc. 13th. Biennial Seminar of the Canadian Math. Congress, Halifax.

Haeniger, A., Sur la Cohomologie de l'Algebre de Lie des Champs de Vecteurs (under Publication).
Haenliger, A. (1974) Sur la Cohomologie de Gelfand-Fuchs. Springer Lecture Notes in Mathematics, 484, 121-152.

Helgason, S. (1962) Differential Geometry and Symmetric Spaces. N.Y., Academic Press.
Jacobson, N. (1966) Lie Algebras. N.Y., Interscience.
Kowalski, O. (1973) Partial Curvature Structures and Conformal Geometry of Submanifolds. J. Diff. Geom., 8, 53-70.

Kulkarni, R.S. (1968) Curvature and Metric. Ann. Math., 91, 311-331.
Kulkarni, R.S. (1970) Curvature Structures and Conformal Transformations. J. Diff. Geom., 4, 425451.

Marcus, M. (1975) Finite Dimensional Multilinear Algebra. N.Y., Marcel Dekker.
Nomizu, K. (1972) On the Decomposition of Generalized Curvature Tensor Fields in Differential Geometry. Papers in Honor of K. Yano, Kinokuniya, Tokyo.

Nyenhuis, A. and R.W. Richardson (1964) Cohomology and Deformation of Algebraic Structures, Bull. Am. Math. Soc., 70, 406-411.

Pais, A. and V. Rittenberg (1975) Semisimple Graded Lie Algebras. J. Math Phys. 16, 2028-2073.
Singer, I.M. and Thorpe, J.A. (1968) The Curvature of 4-Dimensional Einstein Spaces. Global

Analysis. D.C. Spencer, S. Iyanaga. (ed.), in Papers in Honor of K. Kodaira. Princeton University Press and University of Tokyo Press.

Tilgner, H. (1977a) Graded Generalizations of Weyl and Clifford Algebras. J. Pure Appl. Alg., 10, 163168.

Tilgner, H. (1977b) Graded Generalizations of Lie-Triples, J. Alg., 47, 190-196.
Tilgner, H. (1977c) Extensions of Lie-Graded Algebras. J. Math. Phys., 18, 1987 - 1991.

تعميمات مـن درجــة ع, لبعض جـبر (لي)" الـكـلاسيكي وبني التقوس

د . هانز تيلجنر
تسّم الرياضيات، كلية العلوم، جامعة الكرياض ، الكرياض ، المملـكة العربية السعودية

بواسطة الصيغ الثنائية الحطية الميتاثلة الدرجة وشبه المَتاثلة الدرجة يمكن أن نعرف تعميِّت من درجة ع، لـبر التحويلات شبه المتعاملة والسمبلكتك وشبه الواحلدية على فضاءات المتجه الحقيَي من درجة ع، . والتحويلات المعيارية المناسبة في هـنا البمبر السمبلكتك العمودي وشبه الُواحدي المنرج هي تعميلات ملرجة لبُني تقوس

 البلبر ، ويتبين أن علاقات التبديل الملرجة للتقـوسات التـافهة الشـــبه متعـامدة والمدرجة بصورة شبه هرميتية هي شروط لازمة وكافية للجـبر المعيـاري مـن أجـل متطابقة پ جاكوبي "المدرجة . وكحالة خاصة ينتج مفهوم التقوس السمبلكتك .

