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HEAT TRANSFER IN PLANE COUETTE FLOW WITH
PRESSURE GRADIENT AND VISCOUS DISSIPATION

A. Aziz*

A.S. El-Ariny **

The paper presents an analysis for heat transfer in plane couette flow in the presence
of additional pressure gradient and viscous dissipation. By a simple transformation,
the effect of viscous dissipation can be superimposed on the solution given by Bruin [4]
Sor zero viscous dissipation. Numerical results are presented for a typical set of bound-
ary conditions showing the development of temperature profiles and Nusselt number.
It is found that viscous dissipation can lead to significant reduction in heat transfer
Jrom the hot moving plate particularly at low pressure gradient.

Nomenclature

a = distance between the plates

¢, = specific heat

h = heat transfer coefficient

k = thermal conductivity

p = pressure

P = dimensionless pressure gradient

T = temperature

u = fluid velocity in x-direction

U = velocity of moving plate

X = streamwise coordinate

X = dimensionless x coordinate = x/a Pc
y = ftransverse coordinate

Y = dimensionless y coordinate = y/a
Ec = Eckert number = U/c(T,— T,)
Pe = Peclet number = U a/a

Pr = Prandtl number = uc,/k

Nu = Nusselt number = h a/k

o = thermal diffusivity = k/pc,
0, = dimensionless temperature

il = dynamic viscosity

p = density

Superscripts

* = quantity with viscous dissipation
Subscripts

0 = at entrance, x=0

1 = at bottom plate y=0

2 = at top plate, y=a

m = cup-mixing

X local

ol at very large x

1. INTRODUCTION

Heat transfer in Couette liquid flow has been
investigated extensively for a number of flow situations
and boundary conditions. For example, Sestak and
Rieger [1] considered plane Couette flow in the absence
of pressure gradient and viscous dissipation and op-
tained temperature distributions for four combinations
of uniform temperature and zero heat flux boundary
conditions. Vogelpohl [2], on the other hand, studied
plane flow with zero pressure gradient and reported
the temperature profiles resulting from the viscous
dissipation of energy. The effect of additional
pressure gradient was analysed by Hudson and
Bankoff[3] and more recently by Bruin [4]. In these
analysis the effect of viscous dissipation was neglected.
In certain applications, the knowledge of combined
effect of pressure gradient and viscous dissipation on
heat transfer is more useful. The purpose of this
paper is to present an analysis for such applications
and to provide representative results showing the
development of temperature profiles and Nusselt
number.

2. ANALYSIS

The physical situation analysed is sketched as inset
in Fig. 1. The bottom plate is stationary while the top
plate moves with a velocity U. The plates are main-
tained at uniform temperatures T, and T,. The fluid
enters the channel with uniform temperature T, and
flows under the influence of negative pressure gra-
dient. The velocity distribution is given by [5]
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Fig.l Temperature distribution in Couette flow with
pressure gradient and viscous dissipation.

2

Moy & d oy oy

U a 2uU  dx a a (n
Neglecting streamwise conduction compared to stre-
amwise convective heat transport but retaining the
viscous dissipation term, the simplified energy
equation for steady flow of constant-property fluid
becomes

T & T W du 2
ox * oy - pe, (dy ()

u

To obtain the solution for temperature distribution

with pressure gradient and viscous dissipation, the

dependent variable T is transformed to 6 according to
T-—To

0= —op- — 2 (Y

T,—To ®3)

Introducing Eq. (1) into Eq. (2) and using the above
transformation the energy equation in dimensionless
form becomes

o
YT +PA=Y)]72== 532
o' + EcPr{l+P(l-2Y)P? )
where
2
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Fig.2 Variation of local Nusselt number with longi-
tudinal distance at different pressure gradients.

uCp Ua Fe — U?
(T, — To) (5)

If o (Y) is chosen such that

o + EcPr [1 + P(l = 2Y* = 0 (6)
Eq. (4) reduces to
9 %0
Y+ MU=V =7 %

which is analogous to energy equation without viscoug
dissipation and has been solved by Bruin [4] in termg
of hypergeometric functions. The solution for o
can readily be obtained from Eq. (6) and superim-
posed on Bruin’s solution according to Eq. (3) to
give the temperature distribution.

To display representative numerical results, solu-
tions for P = 2 were obtained for the following
boundary conditions:

Y=0,X>0,0=0
Y=1,X>0,60=1 ®)
X=0,0<Y<10=0

These boundary conditions are the same as chosen by
Bruin and for which numerical results are available
in his paper. The corresponding boundary conditions
on 9 become
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Y=0,9 =0, Y=1, o=0 (9
and the solution for o is

1
o = EcPr{(P?+2P+3)Y—3(1 + P?Y?
+4P(1 +P) Y- 2P*Y" (10)
Denoting the dimensionless temperature (T — To) / (T,
— Tp) by 6% the cup mixing temperature based on
the usual definition can be obtained from Egs. (1), (3)
and (10) as

. |
0* m = Om -+ 2% Ec Pr x
[8P3+21 P2 + 28 P + 105
3+ P (11)

where 0y, is the dimensionless cup-mixing temperature
calculated by Bruin. As usual, the local Nusselt num-
ber Nu, at the moving plate is defined as
«_ ha 1 00* I
Ny ===~ 7= (v =
(12)

It can be shown that for the fully developed tempe-
rature profile the Nusselt number approaches the
limiting value
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TUOLHRP) Lo o T8P 21 P2+ 28 P + 105
210 2+ P
3. RESULTS

Fig. 1 shows a typical set of temperature profiles
for P =2 and Ec Pr =1 together with the corres-
ponding profiles for zero viscous dissipation, EcPr
= 0 based on [4]. As expected, the addition of
viscous dissipation term enchances the temperature
level throughout and the effect is quite significant for
Ec Pr of the order of unity. The variation of Nusselt
number with longitudinal distance is shown in Fig. 2
for parametric values of P in the range 0 - 1. It can be
seen that viscous dissipation can lead to significant
reduction in heat transfer from the hot moving plate
particularly at low values of P.
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