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THE PROBLEM OF CONTINUOUS FOUNDATIONS

M. F. Zein *

The assumption of a uniform soil pressure under continuous foundations is either
dangerous or too expensive. When the boundary restrictions do not permit the extension
of a foundation be yond the edge of the exterior columns, a uniform soil pressure distribu-
tion assumption should be discarded and an elastic analysis could be performed. When
overhangs are possible, moment distribution will only give the general trend of the
moment curve. Rough agreement of moment distribution results with elastic analysis
in interior spans. The agreement between column reactions obtained by moment dis-
tribution and the actual column loads is a measvre of the elastic analysis. Moments
obtained by statics analysis are unrealistically high. It is suggested that a rigorous
analysis based on the elastic foundation theory may be used in important projects.

Nomenclature

—Ax .
Akx =e (cos AX + sin AXx)

—Ax .
ka =e (sin Ax)

A (cos Ax — sin Ax)

C).x = ¢
~Ax
Dkx =e {cos Ax)
= Footing Width
El = Flexural Rigidity of Footing Section
[E] =4 x4 matrix of coefficients of the 4 end

conditioning equations.

{F} =4 element vector consisting of computed
shears and moments, M, V,;, Mp, Vg, at
both ends of the footing when infinite length
is assumed.

} = 4 element vector consisting of the end condi-

tioning forces Pga, Pob, Mob, Mob, required
to correct for the infinite length assumption.

K = Modulus of Subgrade Reaction

= Total Length of Footing
= Externally Applied Moment

/
M
M = Moment at any section along footing length.
P = Concentrated Applied Column Load
p

= Soil pressure ordinate at any point under
the footing.

q = Uniformly distributed applied load.

Vv = Shear at any section along footing length.

X = Distance along the footing as measured to
the right of the point of application of a
concentrated load.

= Vertical deflection of the footing at any point.

A = Characteristic Length = 4, / BK;
4El

0 = Slope of the elastic line of the footing at
any point.

1. Introduction

In any continuous foundations problem, the major
unknown is the soil pressure distribution pattern.
Once this distribution is determined, the problem
reduces to simple statics calculations. Some engineers
tend to overlook this fact by accepting a uniform
soil pressure distribution as a reasonable assumption.
It turns out, however, that this assumption can be
either dangerous or too expensive (in terms of rein-
forcement required) even in the case of the fairly
rigid foundations. It is clear that the problem becomes
statically determinate once the soil pressure distribu-
tion is obtained. It would, therefore, seem contradic-
tory to proceed with an indeterminate analysis after
having assumed a soil pressure diagram. Dunham (1)
has suggested an approach similar to that of twoway
or flat slabs in designing mat foundations. The mat
is assumed to be loaded by a uniform soil pressure
with moments and shears computed as ina floor slab.
In many cases results obtained by this approach can
be completely in error and computed column reac-
tions would be incompatible with actual applied
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The Problem of Continuous Foundations

column loads. The analogy does not hold, and a
mat foundation should be treated as a slab supporting
concentrated column loads where the reactions to
these loads are provided by soil pressure and not as
an inverted beam or slab supporting an assumed
uniform soil pressure,

It might, therefore, seem reasonable on this basis
to solve the continuous foundations problem by
statics after having assumed some soil pressure diag-
ram. The fact remains, however, that the results can
be expected to be only as good as the assumed pressure
diagram. If a uniform soil pressure is assumed, an
uneconomical design will result and the moment
diagram will mostly maintain one sign throughout
the foundation causing tension on the upper fibers
only. This situation can be aggravated when the ex-
terior column load exceeds half that of the average
interior column load, or when overhangs beyond
the limits of exterior columns are either small or
absent. In general, it would be difficult to guess before-
hand at a realistic soil pressure distribution pattern.

The interaction between the supportihg subgrade
and the foundation should not be overlooked. The
analysis should also reflect the effect of the founda-
tion size and its flexural stiffness. Such approach
would result in a unique solution that will satisfy
equilibrium and both the properties of the supporting
subgrade and the foundation. The elastic subgrade
reaction theory is an attempt in this direction [2].
The subgrade is assumed to be homogeneous and
elastic. It is simulated to a group of closely spaced
independent identical elastic springs. Any horizontal
continuity in the subgrade is often ignored. The equi-
valent spring stiffness provides the constant of propor-
tionality between pressures and deformations in the
soil, namely the coefficient or modulus of subgrade
reaction. Clearly, this theory oversimplifies the sub-
grade properties but also simplifies the elastic founda-
tion solution. Some elasticity of the soil is, of course,
undeniable and Kramrisch-Rogers [5] formulated
an empirical simplified version of the elastic founda-
tions theory in an effort to bypass the tedious calcu-
lations involved in the exact solution. A.C.I. Com-
mittee 436 [6] proposed the use of this simplified
empirical approach in designing continuous founda-
tions. However, one simplification made in developing
this empirical procedure restricts it from general
application to most practical situations. [t states
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that moments caused by settlement deformations
(dishing) of the continuous footing as a whole are
neglected. Thus only localized effects of the applied
loads are computed and no attempt is made to deter-
mine the overall behavior of the footing under the
effect of the loads as a group. The procedure assumes
that the resultant of subgrade reaction pressures under
a column is equal to and concentric with the applied
column load. It also assumes that these pressures
have maximum ordinates under the column and
minimum ordinates at the center of the bay or at
the tip of the overhang in case of an exterior column.
That these assumptions can be totally or partially
in error is illustrated by the solved examples at the
end of this presentation. In many cases, the engineer
is faced with designing a mat foundation where pro-
perty lines do not permit any overhangs beyond
exterior columns. Maximum soil pressure ordinates
do not necessarily have to occur right under the column
nor does the minimum pressure ordinate have to
occur at the middle of the bay. In any event, no real
advantage is gained if the designer would still be
faced with the problem of solving for the effects of
the overall foundation dishing and superposing it
on the results obtained by the empirical method. It
should be noted here that in many practical cases the
“dishing” moments can be of such a magnitude as
to offset completely and reverse the sign of the locali-
zed moments. Negative moments may no longer
occur under the column load nor will positive mo-
ments occur necessarily at midspan.

With the current trend of using electronic compu-
ters in many engineering offices where, there remains
little reason for not applying the more exact solution
of the elastic foundation theory as provided by
Hetenyi [7]. In the remainder of this paper, the elastic
foundation solution is briefly described and presented
in the form of a computer program. Three solved
examples at the end provide a comparison of results
from different methods.

2. Elastic Foundation Formulation
Sign convention:

The following forces are considered positive when
acting as described:

1. Applied loads acting downwards.
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FIGURE (1)
AN INFINITE LENGTH BEAM ON ELASTIC FOUNDATIONS
ACTED UPON BY ONE CONCENTRATED LOAD

s
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SHEAR CURVE
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FIGURE (2)

BEAM ON ELASTIC FOUNDATIONS {INFINITE LENGTH ASSUMED)
ACTED UPON 8Y A SERIES OF CONCENTRATED LOADS

2. Externally applied moments acting clockwise.

3. Internal moments when causing tension on the
bottom fibres of a section.

4. Shears when acting downwards on the right
end of an elemental section.

Deflections and slopes are referred to the coordi-
nate system shown on Fig. 1.

Equilibrium considerations of an element of a
beam on elastic foundations results in the well known
differential equation of the elastic line of that beam:

d*y
Bl 9 Y

{assuming no horizontal continuity of the
subgrade).
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In the absence of a distributed load “*q” and assuming
a beam that has an infinite length acted upon by one
concentrated load ““P”’, the solution to Eq. (1) becomes
(with origin of coordinates considered at the point
of load application);

Pr —Xx .
= 2B e (cos Ax+sin Ax) (2)

r = %/ KB
4EI

The constant A is termed the characteristic length of
the beam and has the units of (l/unit length). By
successively differentiating *‘y” with respect to “x”
three times one obtains expressions for the slope,
moment and shear at any point along the beam as

follows:

== 9 = — “BK, © (sinhx)  (3)
d2y P —AX .

—El = M _Te (cos Ax—sin Ax) (4)
d3 y P —Ax

—El —;5=V = —-5e " (coshx) 5)

Eqgs. (2), (3), (4) and (5) involve the first power of
the column load ‘*P” and it is clear therefore, that
the effect of several concentrated loads applied at
different points on the beam, can be obtained by
direct superposition of the separate effect of individual
concentrated loads as obtained from Egqs. (2), (3),
(4) and (5) See Fig. 2.
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The Problem of Continous Foundations

3. Correction for Finite Length Effect

Let a continuous footing having a finite length
extending between two points “A™ and ““B” be analy-
zed according to the procedure discussed above (i.c.
assuming it has infinite length). This procedure will
result in moments and shears (M,, V,) and (M,, V)
at both ends “A” and “B’” respectively (Fig. 2).

Since the actual beam should have zero moments
and shears at both free ends we now require that
Ma, Va, Mp, Vp, be reduced to zero. If this is achieved
the net effect between points “A” and “B” on the
infinitely long beam will be that of a beam of finite
length extending between “A’ and “B”. To achieve
this purpose additional end conditioning forces (Moa
Poa) and (Mgb, Pob) should be applied at points
“A’ and “B” respectively on the infinitely long beam.

The magnitudes of these end conditioning forces
are computed as follows: At each end “A” and “B”
the sum of all moments and shears due to the applied
concentrated column loads (Fig. 2) and due to the
added and conditioning forces (Fig. 3) should add
up to zero. Thus, four conditions are available to
compute the four unknown end conditioning forces:

Poa Pob C Moa Mob
M+amta 2t =272 Py=00®
P P_ D M M
~oa ob )J oa ob
Va +— > —Z—AM—O (7
P P M M
oa C ob oaD ob
v _I.)%DM Pob XMoaA Mwob —0 O
b 2 2 2 2 )

The four equations can be solved simultaneously for
Poa, Pob, Moa, Mob. The separate effects of these
new forces are computed (Fig.3) and superimposed
on the results of (Fig. 2) The results will be that of
a finite beam with two free ends.

4. COMPUTER PROGRAM

The program performs six different interdependent
tasks. These are indicated on the General Flow Chart
(Fig. 4) and will be described below.
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FIGURE (3)
SEPARATE EFFECTS OF END CONDITIONING FORCES

1. Read all input data and establish the dimen-
sions of the footing considering any boundary
limitations. If possible the footing is propor-
tioned such that the resultant of column loads
coincides with the center of gravity of the
footing area.

2. Compute footing thickness as governed by
the allowable punching shear stress at the
most critical column.

3. With a footing thickness established from
step 2, the characteristic length A is computed.
For the purpose of analysis the foundation
length is divided by (m + 1) stations into
“m” number of equal segments. Deflections,
moments and shears, due to each one of the
applied column loads are computed from

Egs. (2), (4) and (5) at each one of these stations
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F. Zein

GENERAL FLOW CHART

READ: COL.LOADS AND DIMENSIONS, SPANS,
BOUNDARY LIMITATIONS, MATERIAL PROPERTIES

L AND MODULUS OF SUBGRADE REACTION
ESTABLISH FOOTING DIMENSIONS TAKING

INTO CONSIDERATION ANY BOUNDARY LIMITATIONS.
IF POSSIBLE PROPORTION FDOTING 80 THAT
THE COL LOADS RESULTANT COINCIDES WITH |
THE C.G. OF THE FOOTING AREA. 1
COMPUTE FOOTING THICKNESS "7 GOVERNED
BY PUNCHING SHEAR OF THE MOST

| CRITICAL COLUMN

i
SAND —_ CLAY
CHECK SOIL TYPE

I
a
L5
Ws=Hs( \_éi)

f

e
o Ks (B2
K= Ks{i5g) : |

3 CHARACTERISTIC LENGTH
X4l
14

FOUNDATION IS
DIVIDED ALONG
ITS LENGTHABY
STATION POINTS
SPACLO AT EQUAL

[6]

AT EACH STATION POINT COMPUTE:
D .
y W:p[')e (C0s. Ax +Sin. M)

INTERVALS. ;o ax

W s THE ve-d ;P(-)e o8 A%

NUMBER OF '

CONCENTRATED N N

LOADS. Mg S pe™ (cos. x-3in.0x)

£ 4s4 MATRIX OF
END CONTITIDNING

T*3vB L. i=.( 16 (Cos A+ Snx)

W= 2— j/ F.,v',éhC-.--.- Ax
IE

™

MT‘; Z_ F[(l)e-h (Cos Xx-Gin Ax)

;
4 E
ST E 18 (Cos k)

BACK TO STEP"E"

T =T+ INCREMENT

AT EACH STATION POINT ADD RESYULTS OF
STEP "B TO THOSE OF STEP D.

CHECK FOOTING THICKNESS "T" FOR THE
MAXIMUM MOMENT AND SHEAR ORDINATES

THICKNESS
INADEQUATE

THICKMESS
ADEQUATE

i

COMPUTE SOIL PRESSURE ORDINATES AT
EACH STATION

Ail= kg Y

DESIGN REINFORCEMENT|

PRINT RESULT
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and at the end of the footing in case it does
not coincide with a station point. Each time
the point of application of the column load
in question is considered the origin of coordi-
nates. The effects of ail column loads at each
station are added, the assumption being now
is that of an infinite length beam.

Matrix Form as:

r l’
o w1 P
4 4r 2 2

! Py M

Yy 2 2 2 2 (5
S P
a @ 2 2

w Muoa

2 2 2 2

College of Eng. Univ. of Riyadh
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Egs. (6), (7), (8) and (9) can be written in




The Problem of Continuous Foundations

or concisely:

(E] ({F = {F}

gl
inverting (E) one can write:

{Fg} = E' ()

with the elements of the {FE} vector known,

(Poa, Moa) and (Pop, Mop) are now applied
at points “A” and “B” of the infinite beam
respectively. Their separate effects are comput-
ed as in step 3, at each station and their total
effect at each station is added to the results
of step 3. The results now reflect the behavior
of the actual foundation.

5. The biggest moment ordinate is now picked
and the footing thickness is checked for it.
If the thickness is inadequate it is incremented
and control returns to step 3.

6. As a final step, soil pressure ordinates at all
station points are computed from the relation-
ship:

p=KSy

and printed out along with moment, shear
and deflection ordinates at each station point.
Steel reinforcement is computed under each
column and at the point of maximum moment
within each span. When a column load does
not coincide with a station point, interpolation
is required between the two adjacent stations
to establish ordinates at the column point.

The computer program prepared by the writer consists
of one mainline program that calls in six different
subroutines to perform the six different steps outlined
above. The two subroutines that perform steps (3)
and (4) will require auxiliary storage in case of a limit-
ed core capacity. Auxiliary storage enables the pro-
gram to handle footings of almost any length with
a small chosen segment length. Accuracy of the results
are of course independent of the length of the segment
chosen, but it may be desirable sometimes to obtain
results at closely spaced station points.

While the program is mainly designed for founda-
tions continuous in one direction only (i.e. supporting
a group of columns along one line) it can be applied
with reasonable accuracy for the analysis and design

ool — bl 3l
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FIGURE (5)
EXAMPLE SHOWING COMPARISON OF THREE METHODS OF ANALYSIS
OF A RELATIVELY RIGID CONTINUOUS FOOTING WITH NO
GVERKANGS BEYOND EXTERIOR COLUMNS

of mat foundations. Each bay of the mat in each
direction supporting any one column line can be
treated independently as before.

5. SOLVED EXAMPLES

On Fig. 5 and 6 are shown two examples of two
combined footings supporting identical column loads.
The footing on Fig.5 does not extend beyond the
edge of the exterior columns (as may be required by
some boundary restriction). In spite of the relative
rigidity of the footing (t=5.5ft) the soil pressure
distribution pattern obtained from the elastic founda-
tion analysis is not a uniform one. The deflected
shape of the footing is shown to be concave down
with no inflection points. Flexural tension is caused
on top fibres only with increasing magnitudes in-
between columns. Maximum soil pressure ordinates
are mobilized at both ends where maximum deflec-
tion occurs and then decrease towards the middle.
This result is characteristic of continuous footings
which are not allowed to extend beyond the edge
of exterior columns and when the exterior column
load exceeds in magnitude about 409 of the typical
interior column load (all spans being approximately
equal).
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The same footing when solved by statical moments
assuming uniform soil pressure distribution yields
again a concave downward deflected shape with no
inflection points, but the moment ordinates become
much higher than before. An inconsistency is observed
here in that a uniform soil pressure distribution in
reality is not compatible with a concave deflected
shape. An indeterminate analysis by moment dis-
tribution with a uniform soil pressure diagram yields
a completely erroneous result which is not even
compatible with the actual column loads.

Fig. 6 shows the same footing extending 6 feet beyond
both exterior columns. The general deflected shape
is still concave down, but not as severely as before.
Localized curvatures within each span are now more
distinct because of the decreased footing rigidity
(t = 4 feet) thus, higher soil pressure ordinates are
now mobilized directly under the columns than within
each span. This increased localized span curvature
is also reflected on the moment diagram where the
moment now reserves sign under each column.

The third example of Fig. 7 shows a footing 18
inches thick supporting lighter column loads. The
elastic deformation of individual spans is now very
clear. Most of the resisting soil pressure volume is
concentrated under the columns directly.

Journal of Eng. Sci. Vol 1, No. 2, June 1975

6. Conclusions

In analyzing mat or continuous foundations it is
mostly unjustified to assume a uniform soil pressure
distribution pattern, even in the case of relatively
rigid foundations. When boundary restrictions do
not permit the extension of a foundation beyond the
edge of exterior columns a uniform soil pressure
distribution assumption should be discarded and
the elastic analysis should be performed. Where over-
hangs are possible, moment distribution will only
give the general trend of the moment curve. Rough
agreement of moment distribution results with the
elastic analysis is usually obtained in interior spans
which are far enough from edge effects. The agreement
between column reactions obtained from moment
distribution method and the actual column loads
can be considered as a measure of the accuracy of the
indeterminate analysis procedure. On the other hand,
the method of statical moments results in moments
which are unrialistically high because of the un-
realistic uniform soil pressure assumption. In any
cause, a rigorous analysis based on the elastic
foundation theory should be indispensible in impor-
tant projects and irregular situations.
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