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PLATES ON ELASTIC FOUNDATIONS

M. A. Mahayni*

Studies of plates on elastic foundations are presented. The anulysis is based on the
representation of the subgrade as a system of vertical springs connected by a horizontal
membrane with constant tension force. Axially symmetric problems as well as rec-
tangular plates are considered.

Numerical results were obtained to study the effect of the main parameters that
involved into the problem. These parameters are:

1. The flexibility index.
2. The equivalent membrane tension modulus of the subgrade.

It was found that as the flexibility index increases the deflections and moments in
the plate decrease. Also the larger the tension modulus the smaller the deflections inside
the plate are, thus distributing the load to the region outside the plate. A small increase
in tension modulus creates moments in a uniformly loaded plate, but reduces the moments
arising from a concentrated load on a plate on an elastic foundation.

Nomenclature
Ao By, €, ...y Zy = Stiffness factors, defined by P = load intensity function in pounds per square

Eq. 12 inch
a = half the length of the plate. S = total shearing force acting on the subgrade
b = half the width of the plate. T = equivalent membrane tension modulus=t/Kb?
¢ = aspect ratio =b/a t = constant membrane tension force.
D = plate stiffness factor = Eh%12(1—p? u = strain energy
E, u = plate elasticity constants. w = displacement in z-direction
H_ = symbol of Hankel function .

o v = total potential energy

h = plate thickness o = K/2
I and Ko_= modified Bessel function of the second ¢ = X/b

kind.
Jo = Bessel functions of the first kind. noo=yb

2 _
k = spring’s constant. V" = Laplace operator
= el®
K = flexibility index = Kb*/D i‘ /L
= el

L, = characteristic length = (D/K)'* A e"® /L,
M = bending or twisting moments. AV,Au = distance between node points of a network
N = generalized shearing force acting on the plate c0s20 = — t2JkD

and the subgrade 2 = potential energy of external loads.

*  Consulting Engineer, Riyadh.
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1. Introduction

Analysis of plates on elastic foundation began
in the last century when Winkler [1] proposed the
simplest model of elastic foundation. The subgrade
was replaced by vertical springs or, equivalently,
by a heavy liquid. Practical applications of this theory
to pavements design were made by Westergaard
[2, 3, 4, 5]. Many particular solutions for axially
symmetric problems were given by Schleicher [6].
Various solutions were given by Timoshenko [7]
and others [8,9].

The basis of another approach to the problem,
considering the foundation as an elastic solid, was
introduced by Boussinesq [10], who solved the problem
of a semi-infinite homogeneous medium subjected
to a concentrated normal load at the surface. Tera-
zawa [11] presented the same solution using different
approach. Newmark [12, 13] worked out influence
charts computing stresses and vertical displacements
in a homogeneous medium for any distribution of
normal surface loading.

In the present century the problem has attracted
the attention of a number of elasticians. Marguerre
[14, 15], Biot [16], Pickett [17], Passer [18] and Serebr-
ganyi [19] developed formulas for one layer of finite
thickness. Hogg [20] and Holl [21] were first to analyze
the problem of thin slabs of infinite size supported
by a semi-infinite elastic solid and subjected to a
symmetrical loading. The unsymmetrical loading was
not worked out until 1947 by Volterra [22]. In 1943
and 1945 Burmister [23, 24] established the equations
of stresses and displacements for the two and three-
layer systems subjected to radially symmetric loading.

Extensive numerical data for vertical displacements
and stresses for two and three-layer systems were
presented by Burmister [25], Fox [26], Acum and
Fox [27], Mehta and Veletsos [28] and Lemcoe [29].

The three dimensional elasticity problem of plates
on elastic layer was studied by Vlassov and Leont’ev
[30], using a variational method.

2. Methods of analysis

The differential equation of a medium thick plate
supported by a system of vertical, parallel, tension-
compression springs, connected by a horizontal
membrance of constant force [30] is:

DV*w, —tV’w, + kw, = p )

where (D v*w,) represent the action of the plate
with flexural stiffness D and (— ty2w, + kw,)
characterize the behavior of the subgrade with constant
membrane force t and spring’s constant k.

The region outside the plate is characterized mathe-
matically by (30):

Viw,~alw, = 0 2)
k & i
2 2
where of = N and y ) +—2—6y

Both regions are connected through the following
boundary conditions at the edges.

M, =0,w,(a) = wya) orw(b) = wyb)
N,(a) = S, (a) or Ny(b) = S (b) (3)
where

M, = the moment normal to the edge of the plate.
w(a) and w, (b) = the deflection of the plate at
the edge.

wy(a) and wy(b) = the deflection of the external
region at the boundary between the two regions.

N,(a) and N (b) = the generalized shearing force
of the inner region at the boundary.

S,(a) andS, (b) = the generalized shearing force of
the outer region at the boundary.

3. Axially Symmetric Problems:

For axially symmetric problems the deflections
w, = w, (1) do not depend on the polar angle 0
and the governing differential equations reduce to
ordinary differential equations of the form:

D v*w, (W) — t¥’rw,(p) + kw, (n) =P (4a)
V2w, () — oy () = 0 (4b)

where Laplace operator is -

d 1 d
2. = -
Vir=g tt T
The general solution of Eq. (4a) is:
W, = wy, + W,

where w, is the particular solution and w, is the
general solution of the homogenous equation:

t k
V:l wy ——FV; w,—l——le =0 (5)

Eq. (5) may be written in the form:
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(VAW +A2)w =0 (6)

k —t
2 2 _ X
where A°.A =5 HE

The general solution of Eq. (6) is the sum of the
general solution of the two following equations :

(V2 +2) w, =0
(VP + A w =0 Q)
Accordingly, the general solution of Eq. (4a) is:
w, = B, J,(\) + B,H () + B, J (A1) +

A2+ A=

B,H,® (A1) + w, 8)
and the general solution of Eq. (4b) is:
w, = Bs I (ar) + By K, (ar) €)]

Eqs. (8) and (9), with the boundary conditions
give the general solution of the axially symmetric
problem of plates on elastic subgrades.

4. Rectangular Plates:

For rectangular plates it is more convenient to
consider the governing differential equations in
dimensionless coordinates. Introducing the following
dimensionless quantities,

Y X -5
n = { = b and ¢ = "
where
2b = width of the plate in the y-direction
2a = length of the plate in the x-direction
¢ = aspect ratio

one obtains
pb*

V“wl—ZTKV2w1+Kw1= 5

1

ﬁwz =0 (10)

2
Viw, —

where

a_ L [ & i
Vi= 7 [az2 T o

4
K = k]g = flexibility index
T = t _ equivalent membrane
~ kb*> tension modulus of the

subgrade.

The solution of Eq. (10) is obtained by use of
the finite difference method. The differential equations
are replaced by their finite difference approximations
rather than satisfying the differential equation and
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the boundary conditions at every point the difference
aquation is satisfied at the node points of superposed
grid.

Finite difference operators are normally derived
by direct substitution of appropriate difference ex-
pressions into the governing differential equations,
however it is difficult to use this procedure for certain
unusual boundary conditions. The difficulty can be
circumvented by the application of the energy method
to a physical model of the problem.

5. Description of the Model:

The model consists of a plate analog and an elastic
layer represented by a system of vertical parallel,
tension-compression springs which are connected
by a horizontal membrane. The plate analog is compo-
sed of rigid bars connecting elastic hinges with torsion
springs attached to adjacent parallel bars. This analog
has the following properties:

1. The external loads are concentrated at the elastic
hinges

2. The resultants of direct stresses and vertical shear-
ing stresses are bending moments and shearing
forces are acting at the elastic hinge and at the
end of each bar.

3. The resultant of the horizontal shearing stresses
are twisting moments concentrated in the torsion
springs.

6. The Derivation of the Difference Operators:

The theorem of stationary potential energy applied
to the deflected configuration of the model yields an
equation of the form

V=3(U+Q)=0 (1
where

V = total potential energy of the model
U = strain energy of the model
Q = potential energy of external loads

The quantities V, U and Q are expressed in terms
of the generalized coordinates W,, i.e. the deflections
at the node points of the difference net.

The difference operator at a point is obtained
by minimization of the total potential energy with
respect to the generalized coordinate at that point.

The difference operators for rectangular plates
resting freely on the subgrade are given below.

College of Eng. Univ. of Riyadh
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222 H

DCZ]

D, =[ —4(1 + &) -
E

- 2
O—DOC

Fo = [ 6 -+ 8¢ + 6c* + ﬁl-—I—c2(l + c%) +kk4v
Gy = uc
H, = I —2¢*—4c? + 2 pe? - #c“ ]
I, =h1/2 (1 —pn*)ec
i, = ‘—2(1—;12)0——2([—;1)02—20;H
L - o 20;1{ “
M, = [ + 31— ¢ + 4(l—p)? +c*
+m[)ic2(1+c2)+ kk;)v ]
No = | - 20+e) S KEH e
R, = [ —2—4cz+2uc2—£0£i—H02 ]
u, = 20;;H 2
o = 20~ p?) ¢
W, = | —2(1 — p) = 2(1—p?) ctﬁ%ﬂ— c“]
X, = [ I + 4(1—p)c + 3(1—p?c?
+ —40th ? (1+¢%) +ﬁi;—v ]
Vo =[ 20-we =y e + 1 (-
4%21{ 4 + kxD“v ]
AH, Av = distance between node points of a network
7. Results

The deflections and moments of the plate are
studied as functions of the main parameters that
enter into the problem, namely, the flexibility index
K, and the equivalent membrane tension modulus
T of the subgrade.

Sixty problems were solved for a rectangular plate,

resting freely on an elastic subgrade, and subjected
to uniform and concentrated loads.

A wide range of parameters were considered for
uniformly loaded plates because the effect of the

D

‘]

(12) L

|

0.6¢

0 eyl
1.0 10 100

K:hﬁ
D

FIG. 1 EFFECT OF FLEXIBILITY INDEX ON
THE DEFLECTION

1000

equivalent membrane tension on moments and deflec-
tions 1s more pronounced for such loading. This is
true because the moments in uniformly loaded plates
resting freely on a subgrade without shearing forces
is equal to zero and the deflections of such plates
are uniform. Plates with concentrated loads were
studied to find the effects of the parameters on more
practical cases.

To determine the influence of K and T, six values
of K ranging from 1.0 to 100,000 and five values of
T in the range between 0.0001 and [.0 are considered.

Typical graphs are shown in Figs. 1, 2, 3, 4,.
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FIG. 2 EFFECT OF MEMBRANE TENSION ON THE
DEFLECTION

8. Conclusions

On the basis of the numerical results obtained
it is concluded that:

1) The larger the flexibility index K the smaller
is the magnitude of the deflection w and the moment
M or, in other words, for flexible plate and hard

springs the deflections of the plate are reduced and
the moments in the plate vanish.

2) As the membrane tension T increases the
deflections of the plate decrease. However, the effect
of the load is distributed to the region outside the
plate, thus giving larger deflections outside the plate.
For an extremely large tension force the deflections
everywhere approach zero. It is clear, therefore, that
the effect of the membrane, assumed to connect the
vertical springs, is to cause the distribution of the
load on the subsoil, bringing the problem closer to
the actual behavior of soil.

3) Inspection of Fig. 4 reveals that as the mem-
brane tension T increases the moments in the plate
increase. This phenomenon should be expected if
one recalls that for a membrane-free subgrade or,
in other words, for a Winkler-type subgrade, the
moments in a uniformly loaded plate, supported
freely on the subgrade, are zero.

4) In changing the loading from distributed to
concentrated at the middle, there is usually an increase
in the maximum deflection for small values of the
flexibility index K and the membrane tension T.
However, a small increase in K or T has a pronounced
effect in reducing the deflection of the plate. Moments
are also decreased for larger values of the parameters.

Journal of Eng. Sci. Vol. 1, No. 2, June 1975
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