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On The Existence Of Equilibrium Ranges In Hydromagnetic Turbulence

Sayed Desouki Hassan *

Two equilibrium ranges (magnetic and kinetic) are shown to exist if the two Reynolds
numbers (magnetic and kinetic) are very large and the magnetic field is not very strong.
An equilibrium range is defined to be a range of wave numbers which is responsible for
most of the energy dissipation of the system and for which statistical conditions are
steady, isotropic and independent of the conditions of the energy containing eddies.
If the kinetic Reynolds number is large but the magnetic Reynold number is small and
the magnetic field is strong then we will have only axisymmetry in the same range of

wave numbers.

Nomenclature

-

h = induced magnetic field
—

H = applied magnetic field
—

j = electric current density
—

E = electric field

-

u = velocity

e = density

Y = kinematic viscosity

c = conductivity

i = magnetic permeability
-> >

W,V = Alven velocities

A = magnetic viscosity coefficient

—-— — -

dZ(k), dM(k) = Fourier coefficients of velocity and
Alven velocity

F( ) = Fourier transform of ( )
>
k = wave number vector
E( ) = ensemble average of ( )
-
.. = velocity correlation tensor

1. INTRODUCTION

The existence of equilibrium ranges in magnet-
ohydrodynamic turbulence has been assumed by
many authors. The present work is concerned with
the question of existence of these ranges. Our method
of attack is to analyze turbulence as a mechanical
system (by using Fourier techniques) possessing an
infinite number of degrees of freedom ( corresponding
to different wave numbers in Fourier analysis).

The question of existence can now be expressed in
the following way: Does there exist a range of degrees
of freedom (wave numbers) which is responsible for
most of the energy dissipation of the system and for
which statistical conditions are steady, isotropic and
independent of the conditions of the energy contain-
ing these degrees of freedom (i.e., the range of wave
numbers containing most of the energy)?

To answer this question one has to analyze the
forces acting on the system and find their effect on
energy distribution among different degrees of
freedom, i.e., we have to analyze the flow of energy
in the number space.

2. Fourier Analysis

There is a possible way of describing the turbulent
field as a mechanical system possessing an infinite
number of degrees of freedom, namely, the method
of Fourier analysis.

*
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On The Existence Of Equilibrium Ranges In Hydromagnetic Turbulence

Energy flows from one degree to another. The
system is not conservative, since energy is dissipated
by viscosity and resistivity of the fluid. In a stationary
state, energy is supplied by external sources and the
same energy flows out of the system by the dissipative
effects as mentioned above.

dh — - > > >

ot J = o (E+p ux(H+h) (1)

—> — —

p [g—tqu (u.V)u ]

e 2

= pujxH+h) +vpy u—-Vp
2

—>
Introducing the two Alven velocities W

-

- -
= H/J/ppand V = h//pp and the

magnetic viscosity coefficientA = (I1/puc) into the
set of Eqs. (1) and (2) we get two equations

—>
governing the velocity u and the Alven velocity V:

oV, _ @ oy
v e WV TV W gy
& ©)
T Y
Ju

. _ 0
Fradi o, (WiVj-{-ViVj — UiU;)

o [P 1, )
- o [T+ wivi+7v]+ VU2,

4)

We define the Fourier coefficients of velocity and
Alven velocity by:

dz k) = > _jk.x
= G v
3 —idkgy, 5 )
T [ e -1) '| dx
8 G e — Tossdl LIS

- - - -
d M (k) = o o —ik.x 3
(21.:)3 IV (X)e T
j=1
— idk;x >
[ e - 1 ] dx , (6)
lXJ-

(no summation over j in dZjx;). Moments involving

— —r—
dZ(k) and dM(k) will have the following properties.

- —

- -
dZ; (k) dZ,(k;) = O  k, +k, # 0

—_— — —
=O0[(k)] k; + k, = 0; forany i,j = 1,2,3,

@
dz (k) dZ_ (ky) ... dZ (k) =0
if k+k+..+k #0 ®)
dz; (ky) dZ;(ky) dZ, (ky) =0 [ (dK)?]
if  k+ky+ky=0 ©)

and for higher moments it is the cumulants of the
distribution that continue the series

- — - -

dZ; (k) dZ; (ky) dZeg (ky) dZ,, (ky)

— {dZ;(k,) dZ; (kp} {dZ¢ (ky) dZ, (k) }

e e

—...=0[(dk)3] kl+k2+k3+k4=0

(10
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If in Eq. (10) for example, the four wave numbers

are such that

- - -

k, + k, = 0 and k3+kj=0, then
{dZ, &) dzZ, () } { dZ () dZ0(ky)) = O [(dK)?]

will dominate O [(dk)®] and we have the interesting

result

— —

dZ; (k) dZ; (k) dZ ¢ (k3)dZ,, (ky) -

-

{dZ; (k) dZ; (kp) } {dZ, (k) dZ, (k) } (1D

Moreover the conditions

- -
V.h Vau =
will lead to
—
ki dZi k)= 0 (12)
ki dMi(k) =0 (13)

- -

and from the definition of dZ (k) and dM (k) we have

d_Z:" &K = dZ (—_k') (14)
M) =AM (=R (15)

where the asterisk * denotes conjugation.

we conclude this section by Fourier-analyzing
Egs. (3) and (4) where we obtain

242,65 = i [ Garky 252 g,

t L
a P
~K) dM,, (k) — dZ; (k=K dZ,, ()]
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- -
ik W, dM; (k) — V2 dZ; (k)
(16)
- - - -
_9dM, (k)—lj k; [dM; (k — k) dZ; (k) — dZ; (k
at

Ky dM, ()]
FikWAZ, () — AK®dM, (k) (17

where we used Parseval’s theorem which states that
Fuu) = [[FW]—-— [F@)IK
N k—-k
e
- o —

dZ; (k - k) dZ; (k) (18)

)
.
L

3. On the Direct and Indirect Interaction Theories

Before discussing the energy flow in the wave
number space, we can make an interesting analysis of
the relative order of magnitude of different terms
that contribute to the rate of change of average

- >
quantities of the Fourier coefficients dZ (k) and

- -

dM(k).

The important result of this section is that the
direct and indirect interaction terms (defined later on
in this section) are of the same order of magnitude.
The classical case was proved by Proudman [4]. Let
us try to estimate the order of magnitude of the rate
of change of statistical moments of the distribution

dZ(k), dM(k).

LB (42,09 42, (k) dMp (k) } = i

[ -t

x [ E [dM, (k=K dM,, (k) dZ, (k) dM (k»)
K
- 4z, (- K)Z,, () 42, (o) dMp (i)
~ Elik;W,dM; () dzr (kz)de &) ]

~ E(vk,dZ, (K) dZr (i) dM (k) (19)

College of Eng. Univ. of Riyadh



On The Existence Of Equilibrium Ranges In Hydromagnetic Turbulence

Referring to results of "Eqs. (7) — (10) we have both
sides of Eq. (19) equal to zero if k+k, +k, # 0.
However, if k+k2+k3 =0, and if in the mtegrand

of Eq. (19) wehave k = - k2 then(k k) = - k
Similarly if k k3' then (k k) = — kz, thus
we have

a —_ — p—

Y E {dZk) dZ, (k;) dMp (k;) }

x E[dM(—K)dZ, ()] E [dM,, (—k) dM (k) ]
+ E[dM;(—k;) dMp (ky) ] E[dM,, (—k;) dZ, (k) |
— E[dZ;(-ky) dMp (ky) 1E[dZ,, (~k;) dZ, (k) ]
— E[dZ;(-%) dZ, (k) ] E [dZ,, (~ky dM, (k)]

. Kk 4™ cumulant of dM; (K
o[ - B :

i 4

—K) dM,, (K)4Z,(k)dMp (k) ]

— i [smikj—

—

—K) dZ,, (Z, () dMp (k)

K

— E[ kWM, (KdZ, (k;) dMp (k) ]
— E[vk* dZ,®dZ, ()dMp (k) ] (20)

The first term on the right-hand side of Eq. (20) is
O[dkz] the second and thll‘d terms bemg integrals over
an integrand of O | (dk)’] are ofO[ (dk)2 ], and the
fourth and fifth terms are of O [ (dk)z] .

We notice that the first term on the right-hand side
of Eq. (20) singles out the interaction of _k: k’z andk’3
with themselves. These can be called “direct
interaction terms”.

The second and third terms on the right-hand side of
Eq. (20) represent the interaction of k: k; andk*3 with
all other wave numbers and can be called the “indirect
interaction terms”.

Some classical theories of ordinary turbulence are
based on neglecting the “indirect interaction terms”

oAU Rl — daahl LS

- =
0 dZ_(K)dZ (k) =

h —
klkjkm‘] [ [4" cumulant of dZ; (k
—_ >
k2

and are sometimes called “zero fourth-order cumu-
lant” theories. But, as we have seen, there is a
comparable contribution of the direct interaction
terms and the indirect interaction terms. Thus one
does not expect any good results from carrying out
these theories in the case of hydromagnetic turbulence,
unless there is some situation in which the indirect
interaction terms can be neglected. However, this
case is not obvious from our above analysis.

4. Energy Spectrum Equations

Here we want the governing equation of the quantity
dZm(k_).dZi' (ks This can be obtained from Eq. (16)
by writing a similar equation for dZm(_kS, conjugating
Eq. (16), and then multiplying the equation for dZ

by dZy, and the one for dZy, by dZ;. Adding these
we get

—_ — —_ -
i ] [kdZ] (k~K)dZ(K) dZ,, (k)
o i
—k; 4Z; (k—K)dZ,K)AZ] () ]

+i T kM K—K)dM(K)dZ,®)
%
~ kdM, (k-k) dM; (K)dZ, (0 ]

+ i 1 22z K ankc-K) az (i)
7k .

— dM(k—k) dM(<) . K

_ I ™ 47, (OK. [4Z+E-1) dZ*(K)

— dM* (kK=K) dM* () 1. K

+ kW, dM,, (K) dZ; ()

— dM; () 4Z,, () ~ 24K2Z,,(04Z; ()
@1

Slmllarly, by using Eq. (17) we obtain for dM;
K)dM,, (&)

8 dM® () dM, (0 = i [ [kdMK

ot k’

1) 4Z,,(®) dM; (1)~ kdM;(K~1)dZ7 (9dM,(0) |
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+ i 1 TAZ) R 1dM; (9 dM (00
k

— kdZ(K—K) dM_, () dM; (K]

+ kW, [dZ,(5dM; (k)

— dZ;()dM4(K) ] — 2AK%dM, () M ()
22)

Now we will show the roles of the different types of
terms on the right-hand side of Eqs. (21) and (22) in
the flow of energy in the wave number space.

5. The Role of Inertial Forces
The contribution of inertial forces to 8 { dZ,, (k)
at
» - . .
dZ; (k) is given by
9 4z_)dz: ]
61 'm i

inertial
forces

dZ;(k-K)Z; (K)dZ,, ()

—

[k

)

= i
k

l ~

— kdZik— )dZm(k)dZ (k)] (23)

)

—_— — —
Using the relation dZ*(k) = dZ(—k), the right-hand
side of Eq. (23) becomes

i [ [ [ KAZ(K—KZ; (~K)AZ(K) — kdZ; (kK-
K Kk
04Z,(k)dZ; (<) ]

-

By interchanging k»,_k" in the first term in the
integrand it becomes
de(k k )dZi(— k)dZ (k )—
k;dZ; (k k)dZ (- k)dZ (k)

Using the relation (k;— kj)de(k k ) = 0, we then
have :

2 4z ®dz: ® =0

5t 4Zal i inertial forces (24
This shows that the role of inertial forces in hydrom-
agnetic turbulence is the same as in classical
turbulence. The role of inertial forces is to transfer
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kinetic energy from one part of the spectrum to
another, but not to change the total amount of energy
associated with a particular directional component
of energy.

6. The Role of Pressure Forces

Contracting (m) and (1) in Eq. (21) and using
the continuity relation k,le(k) = kdZ; (k) = 0, the
contribution of the mechanical and magnetic pressure
(third and fourth terms on the right-hand side of Eq.
(21) to the rate of change of le(k)dZ (k) is zero, i.e.

I S =0 (25
[ 5 4Zi(dZ; (k) ]

pressure forces

Thus the effect of pressure forces is to transfer energy
from one directional component of dZ (k) to another
in such a way as to conserve the total energy contrib=
uted by any small region of wave number space.

7. The Role of the Magnetic Energy Convective Term

This is the second term on the right-hand side of
Eq. (22) which arises from the term u; (9V,/dx;) V; in
the induction equation (3), representing the rate of
change of 7 due to convection. Let us contract
(m) and (i) in Eq. (22) and integrate over?. We

notice first that

[ [KdZ; (K —K)dM, () dM, (K)
Kx

kdZ, (K — K)dMi(—K)dMi(k)

—_— —

k. dZ (k- Kk )dMi(— dM;(k)

OAM(-K) dM; ()

where the different steps have been achieved by using
first Eqgs. (14) and (15), then interchanging k and k’
and finally, by using Eq. (12).
3 § aM'E) M) = 0 26)
ax convective
term
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On The Existence Of Equilibrium Ranges In Hydromagnetic Turbulence

we conclude from Eq. (26) that the convective term

will change the total energy associ_a‘ted will‘l certain

directions (for example, | dMi' (k) dM;(k), G #))
k

in such a way as to conserve the total energy of
the magnetic system.

8. Leakage of Energy from the Mechanical System to
the Magnetic System and Vice Versa

This leakage of energy between the two systems is
represented by the second and fifth terms on the
right-hand side of Eq. (21) and the first and third
terms on the right-hand side of Eq. (22). These terms
arise from the terms [V;j(dui/dx;) + W; (du/dx;j)] in
Eq. (3), and [ (0 (WjVi + V;Vj)/0x;)) ] in Eq. (4).

Physically these terms represent the tendency of
the turbulent motion to stretch the lines of force,
thereby increasing the magnetic energy, but the lines
of force will then tend to contract and in so doing they
will accelerate the fluid, thus increasing the kinetic
energy. We will show in this section, that the
contribution of these terms to the rate of change of
the total amount of energy, i.e., magnetic and
kinetic energy, is zero.

Consider the second term on the right-hand side
of Eq (21). After contractmg (m) and (1), mtegratmg

over k and replacing dZ, (k) by dZ, (— k) and dM. (k)
we obtain

{ I Ik dwj(k k) dz; (- dMi(k)
KE

KidM; (K —K)dZ; (k) dM; (=K) |

71 kM~ 0dZi(—k)daMi(H)
'y

— kdMj(K —K)dZ,E)dM; (=K

J 5 UMK —KdZi(- K)dMi(k)
KX

- kidM; (K —K)dZi(k) dM; (=K ]

which is equal to the first term on the right- hand side
of Eq. (22) with the minus sign.

Thus, the contribution of these stretching terms
(second and fifth terms on the right- hand side of
Eq. (21) and first and third terms on the right-hand

oAb ) el — Ll LS

side of Eq. (22) to the rate of change of the quantity
J 14z (5 dzZ; ® + dM; (K) dM ] ()]

5
k

is zero.

9. The Energy Equation for the Kinetic System

We recall first the relation between the Fourier

transform of the velocity correlation tensor
—
¢;; () and dZ (K) which is given by

_, dZ,(K) dZ (k) @
ij N dk
dk - 0

—
dij (k) is given by:

=+

— ik.r

S Rij(_r) e dr

(28)

s S N
ij (k) = 2z

— — - —

where R..(r) = u.(x)u, (x-+r1)
1 1 J

Thus

LiTes -

2

—‘S ¢ ;00 dk
)

(29)

which represents the kinetic energy per unit mass.
Therefore, contracting m, i in Eq. (21) and integrat-

. . —.
ing it over all k we get:

21 S«m WK = SIMK‘“‘

at 2
— —t
-V S ) i k) dk 30)
when IMK represents the interaction term between

the magnetic system and the kinetic system which
—_
we analyzed in Sectionl .7. Actually, Q3 = k* ¢ ;; (k)

represents the spectrum of the vorticity correlation

wi (x) w; (x) as can be shown easily.
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Notice that viscous forces are more significant for
small eddies than for large eddies and represent the
only energy sink in absence of magnetic interaction.
However, in the presence of magnetic forces we have
another sink (or source) represented by Imk(k) which
is given by:

{ lim

1 - — — -
SN —_.[ kdM;(k—k")dM;(k)dZ; (k)
o0 dk

i
IMg = —
2 k'dk-

— KjdM (k — k') dM'}(K") dZ; () ]

Wi ) avs (9azi09-am; ez |
dk—- 0

i
2
€2))

10. The Energy Equation for the Magnetic System

First we define:

— 1 ik
Ijlj(k) = (27.:)3 S H (r) € : dr’
(32)
where
H. @ = Vi)V &) (33)

as the magnetic field correlation tensor.

Also,
r. (B — lim dM;j (k) dM; (k) (34)
ij a’

@—»0
and

Laow® -4 [ r@E o

Thus contracting m and i in Eq. (22) and integrating
over k we get

l —_ — —_—
5 Srii(k)dk = S Imk dk

9
at
- S @ T (9 dk (36)
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Therefore, energy is dissipated from the magnetic
system by the resistivity of the fluid A, which
converts magnetic energy into heat, and by the
interaction term [ Ipmk dk, which converts magnetic
energy into kinetic energy, and vice versa.

11. The Energy Equation for theTotal System

If we now consider the magnetic system and the
kinetic system as one system, the energy equation of
that system will be

8,1 — 1 —
2 (5 wu gV ) =

- — 2 —_— - 37
- S k2¢ii(k)dk—x5 T 0dk (D)

Thus energy flows out of the total system in the form
of heat by the two dissipative agents; viscosity and
resistivity.

12. The Flow Diagram

We have two energy bearing vectors, the velocity
field and the magnetic field. Thus, in the terminology
of statistical mechanics, we have two mechanical
systems, the kinetic system and the magnetic system.
Both systems are out of equilibrium. The kinetic
system is acted upon by viscous forces (converting
kinetic energy into heat), magnetic forces ( converting
kinetic energy into magnetic energy and vice versa),
and by inertial forces which carry energy from one
degree of freedom to another and distribute energy
among different directional components.

The magnetic system is acted upon by conduction
forces (converting magnetic energy into Joule heat),
interaction forces(converting magnetic energy into
kinetic energy and vice versa), and by inertial forces
which carry energy from one degree of freedom to
another and distribute energy among different
directional components.

One can depict the above conclusion in the
following diagram:

College of Eng. Univ. of Riyadh



On The Existence Of Equilibrium Ranges In Hydromagnetic Turbulence

Total System (kinetic -+ magnetic)

Magnetic system Kinetic System
Magnetic convective I — Inertial forces carry

forces will carry - energy from one degree of
energy from one Interaction freedom to another in a
degree of freedom between the | direction determined by
to another and magnetic the viscous forces.

transfer energy system and Pressure (mechanical and
from one directional the kinetic magnetic) forces transfer
component to another system energy from one directional
component to another

Y
Conduction dissipation Viscous dissipation

(Joule heat)

13. On the Existence of the Magnetic Equilibrium
Range

First we clarify what we mean by the magnetic
equilibrium range. This is a range of large wave
numbers which is responsible for most of the energy
dissipation, and for which the magnetic field Fourier
coefficients are statistically steady, isotropic, and
independent of the Fourier coefficients of the range
of wave numbers containing most of the energy.

Second, let us recall the results we obtained for
the magnetic system. We proved in Section 7 that:

— —
d [ dM; (k) dMp (k)
[ —aTT(" ] convective
terms
=0 if i=m=0

# 0 otherwise (in general)

We also proved that convective forces are conservat-
ive, i.e., they do not carry energy out of the magnetic
system. We conclude then that convective forces will
try to redistribute the magnetic energy in different
directions in such a way as to keep the total magne~
tic energy constant, and therefore will try to lead to
isotropy.

In the presence of the external magnetic field H,
we recall that

oAU Gl — drhl )5

—_—

H
- - * — * —

0 | dAM3(0) dMm(k)
[ a ]

£ 0 otherwise

Also, we know that this term occurs with a negative
sign in the kinetic spectrum Eq. (21) and therefore it
represents the modulation of different directional
components of the energy (by converting magnetic
energy into kinetic energy and vice versa), while
keeping the total amount of energy (kinetic or mag-
netic) constant.

Furthermore, we see from Eq. (22) that

0 o« —
[a—t—dMi(k) dMp(K) ]ﬁ = 0

— —

if k.W= 0

i.e., eddies with wave numbers perpendicular to the
external magnetic field are not affec_tgd by its presence.
Also, we note that large eddies (k—»Q' ) are not as
much affected as the small eddies (k—o0) by the
external magnetic field. Thus, the motion of the
small eddies will becory_g axisymmetric around the
external magnetic field H,.

We have, therefore, two competing types of
forces, the external magnetic field which will try to
lead to axisymmetry, and convective forces which
will try to lead to isotropy. If the convective forces
are dominating (as in the case when Ry > > I) then
isotropy is expected. However, if the external magnetic
field is strong and convective forces are weak
(Rm < < 1), then one expects axisymmetry of the
motion of the small eddies (large eddies are not
affected as much).

In the early stages of the generation of the
turbulence field, large eddies are created first (i.e.,
degrees of freedom corresponding to small wave
numbers are excited first). The convection and the
interaction of these large eddies (with each other) will
create smaller eddies. In other words, energy is
transferred to larger wave numbers. The energy
received by a particular degree of freedom can either
be dissipated by the action of conductivity, or trans-
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ferred to higher wave numbers, or transformed into
kinetic energy. If, for example, the magnetic Reynolds
number is very large, dissipation will triumph over
transfer only at very high wave numbers. As we have
seen, in the process of transfer of energy, the con-
vective forces will try to weaken the influence of
external large-scale conditions of the motion by trying
to eliminate directional preferences of the energy .
Thus the motion associated with sufficiently large
wave numbers should be isotropic. This statistical
independence of the motion associated with large
wave numbers from the motion associated with small
wave numbers will lead to the conclusion that the
former motion is in statistical equilibrium since no
time-dependence can be imposed on the motion of the
large wave numbers. The above argument, however,
only points out the existence of the magnetic equilibr-
ium range, and is far from being an analytical proof
for such an existence.

14. On the Existence of the Kinetic Equilibrinm Range

First, we clarify what we mean by the kinetic
equilibrium range. This is a range of wave numbers
which is responsible for most of the viscous dissipation
and for which the velocity Fourier coefficients are
statistically steady, isotropic , and independent of
the Fourier coefficients of the range of wave numbers
containing most of the kinetic energy.

Second, let us recall the results we obtained for the
kinetic system. We showed that:

0 —3 .

[ 21 42, az;, <k>] I
inertial
forces

9 4z, 47 - 0

ot P B
pressure
forces

Thus, the role of inertial and pressure forces in
the kinetic system is the same as that of the convective
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forces in the magnetic system. Also, we notice that the
term corresponding to the external magnetic field in
the magnetic system governing Eq.(22) occurs with
the opposite sign in the equation governing the
kinetic system, Eq. (21).

We can conclude then, by an argument similar to
that of Section 13, that if the Reynolds number is very
high and the external magnetic field is weak, isotropy
is expected (and also the kinetic equilibrium range),
while if the Reynolds number is small and the external
magnetic field is strong, only axisymmetry of the
motion of small eddies is expected.

15, Summary

In this paper we have studied the direct and
indirect interaction theories and showed that in
hydromagnetic turbulence that the approximation
involved in these theories is not legitimate in

general. We also studied the existence of different
equilibrium ranges and showed that they do exist
in hydromagnetic turbulence.

Finally we showed the flow of energy diagram.
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