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ERROR IN READING OF ELECTRICAL MEASURING
INSTRUMENTS DUE TO MECHANICAL VIBRATIONS

Ali R. Hamdi*

Hassan Elkamchouchi**

Fathy Abou-Elenein***

The present work gives a proposed method for studying the effect of mechanical
vibration on the reading of electrical measuring instruments. In this method the surface
of fixation of the measuring instrument is exposed to mechanical vibrations and thus
the moving part (or the measuring part) of the instrument is considered free to move
with six degrees of freedom. The Euler-Lagrange formulation is used to describe the
motion of the moving part. The Laplace Transformation is then used to solve the result-
ing set of equations with some reasonable approximations. It is found that the steady-
state d-c reading of the instrument is increased due to the applied vibrating force. A
Sfactor evaluating this increase has been calculated,

1. Introduction

In recent years considerable attention has been
given to the principles involved in the design and
construction of electrical measuring instruments. A
tremendous progress has been achieved in such a way
that all the basic quantities, namely, voltage, current,
impedance, frequency, and wavelength can now be
measured all over the frequency spectrum via the use
of suitably designed electrical instruments. Yet there
remain many cases in which a special measuring
equipment is needed. For example when it is required
to measure an electrical quantity under the effect of
a vibrating mechanical force, a specially designed
instrument is needed in which the effect of this
vibrating force is eliminated, or at least reduced.

2. Mathematical Analysis

In our analysis we will first derive the equations
of motion of the moving part of the instrument. For
simplicity, the moving part of the instrument will be
represented by a rectangular box. The generalized
system of coordinates will be used to describe the
motion of this box. Each of the generalized coordinates
will be independent of each other, that isthe displace-
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ment in one direction does not produceany reaction
in the other directions. As shown in Fig. 1. the faces
of the box representing the moving part are taken
parallel to the main planes of the cartesian system.
The system with two springs in a general position

can be replaced by three mutually perpendicular
springs in the x, y, and z, directions. The springs
used in the system are assumed to have constant
stiffnesses in each of the above three directions. These
components of the stiffnesses are denoted by

klx ’ kly H klz

k2x ’ k2y ’ kZZ
where the subscipts 1 and 2 denote the first and
second springs respectively.
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Error in Reading of Electrical Measuring Instruments due to Mechanical Vibrations

For small displacement about the equilibrium
position, the potential energy of the moving part
can be written in a quadratic form [1,2]

1

:M‘”

P = 5 by q; q; 1
L,j=1
where g,i = 1, 2,3, ..., 6 are the generalized
coordinates,
and byi,j = 1, 2, 3, ..., 6, are constant
coefficients.

A similar expression can be obtained for the kinetic
energy of the system

1

E = > Q;; & Qj )
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where q, i =1, 2, 3, ..., 6, are the generalized

velocities, and ay, i,j = 1, 2, 3, ... 6 are constant
coefficients containing the inertia properties of the

system.

Since the potential energy of a spring under an
extension x is [ % kx? the expression for the potential

energy P of the system under consideration ( see Fig.2)is
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P=13[kx(q;+ bqs— hlqs)2 + kox (93 +byq4 + h1q5)2

+ kyy(q; + byqs — Ligs + kay(q, — bygg — L,qs)?

+ Ki,(Q2 — hyq+ Lyqef + Ky (q; ~ hyge— Lyq0)* ] (3)
This expression can be explained as follows: Consider
spring 1 in Fig.2. It undergoes three extensions, the
extension q,, the extension b,q, in the x-direction and
the extension h;qs in the negative x-direction. The
other bracketed terms in Eq. (3) can be explained in
similar manners. Note that the quantity ineach bracket

AU Bl — Tkl 25

represents the extension in the corresponding direction
with the second order terms neglected.

The kinetic energy E of the system consists of two
parts. The first part is due to translation along the
main axes, and the second part is due to rotation
about these axes.

2e= M4 +@E+@)+ L&+ 1,8+ 1,42
- Ixy é16 éLt - Ixz QS QG - IyzQA QS (4)

Where M is the mass of the moving part and I
| (R
inertia about the main axes. The equation Euler-Lag-
range of motion of the moving parts is given by,

op d /0E :
% T _aq—) = 0,i = 1,2,3,....,6 (5

xx?

I, and I, are the principal moments of

2z TXy?

the equation can be written in the form

d J0E oP .
E(W = - W , 1= 123,..,6
(6)

The right hand side represents the force acting on the
system represented as the potential gradient of the
potential energy function P. It is clear that Eq. (6)
describes the motion of the moving part of the
instrument under the forces of inertia and torsion. The
effect of an external force could betaken into account
by adding a force term to the right-hand side of Eq.
(6). Taking this external force as

- - - -

f =1, i+ 6j+f5k )
acting at the point

- - - -

r =ai+4+ bj 4+ ck

with the origin at the centre of gravity of the mov-
ing system.

This force produces a moment

- - -
T =rxf
- - -

= (bfy — cfy) i + (cf, — afy) j + (af, — bf)) k (8)
So that the force term to be added to the right hand
side of Eq. (6) is

F = (f,f,fy bfy — cf, » cf, — afy » af, — bf;)  (9)
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Substituting from Eqgs. (3) and (4) into Eq(5) and adding the force term one obtains:

M Ell + (kyy + ka) q; + (Lkyy = Likgy)qs ~ bl(kly + ka) qs = f (10)
M G, + (ki + ky) @2 + (Liky, — Lyky,) g4 — hy(ky, + kp) g6 = £ (an
M q3 + (klx + k2x) q3 + bl(klx + k2x) q4 + (klx + k2x) q5 = f3 (12)

Iy Qs — Ly Qs — L, 45 + hyby (k;, + ky) a5 + hy (Lyky, — Liky) q¢ + (Liky, — Lyky,) qp
+b% (k) tkadas + by (ki F+kp)q; = bfy — cf) (13)

Izz i-:15_ Ixzd6'1yz:q‘t + hf(klx + k2x)+ L%kly + Lngqu + hl bl(klx— k2x) Qs +
(Ly koy — Ly Kyy) qu+b (LK — Ly kyy) g6 + by (hy + ky,) Q3 = cfy — afy (14)

IxxEl6 - Ixy 214 - Ixz ElS - ( blkly + b2k2y ) q, + Ll ( blkly - b2k2y ) qs + [bf ( kly + ka)
+ h? (kyz + k2. ) 196 — hy (Liky, — Loy 94 — By (ky, + kpp)q, = af, — bf] (15)

These represent a set of six equations governing the motion of the moving part of the
measuring instrument under the effect of the mechanical force given by Eq. (7). This set
of equations can be solved using the Laplace Transformation after assuming zero initial
conditions namely,

Or in abbreviated form

[A] [a] = [f] (18)
The coefficients by, ay i, j = 1, 2, 3, ...,6 are
constants involving the system inertia and spring
stiffness. The matrix Eq. (18) may be solved to give
(gl=(al"[f] (19)
The time response of the system can be determined
by taking the inverse Laplace Transformation of
Eq. (19). This inverse Transformation is obtained
either analytically or graphically using numerical
methods [ 3,4] .

3. Solution for practical problems

The solution of the set of Egs. (10) - (15) may
be simplified using the fact that the moving part of
the instrument has symmetrical shape so that the
products of inertia are all zeros, that is,

L, =1,=0L,=..=0 (20)
Also L, =1L, =0L,b = b, =0b,and h; =
h, = h (21)
Symmetric springs will also be considered, hence,
klx=k2x=erkly= k2y=ky’
and k,, = k;, = k, (22)
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q(0) =0, q;0) = 0,i=123,..,6 (16)
Thus -
S’ +byy g a3 agq a5 a6 ] ql(S)1 f1(S)1
4 Stantby apn A4 s 4% q(8) f2(S)
a3 a3 S?ay3+by; ay 35 436 95(S) f;8)] 17
Ay L) A3 S%a44+bay S72y5+bys SPasstbyg|| au(S) | = u(S)
as sy as3 S%asst-bss S%ass+bss STage+bsg|| as(S) f5(S)
| 361 g2 a3 S%ags+bgs S7ags+ bes Szaas‘f‘bssj _%(S)J _fs(S)J

The external vibrating mechanical force will be taken
to lie in a plane normal to the axis of the main
rotation of the moving part, i.e. the yz-plane. This
force may be any periodic function of time

- - -

f = f| cos(ut) j + f, cos(ut) k 23)

Acting at the point (0, 1, 0) as shown in Fig. 3. This
force causes a torque,
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-

—>
=/jxf =1If, cos(ut) i (24)

-
r x

Other torques acting on the moving part of the
instrument are :

< () The torque due to the d—c measuring
current; it consists of two parts. The first T, is due
to the d—c¢ current through the instrument coil. The
second part T, is a periodic one, it is due to the a—c
ripple superposed on the d—c current.

T, = T, cos (vt) (25)
where (v/2 =) is the frequency of the ripple current.
(i) The damping torque, proportional to the
angular velocity q¢ of the moving system. Its
magnitude is aq, where o is the damping coefficient
the value of which should be chosen in such a way as
to allow a stable state of the moving instrument. The
damping torque is usually obtained via a damping
arrangement which in practice can be achieved in
many ways [5] .

Under the conditions described above the set of
equations given by Eqs. (10) to (15) becomes
M q, + 2k, q; — 2b k, g¢ = f; cos(ut) (26)

Mq® + 2k, q, — 2h k, q4 = f, cos (ut) ox)
Mg, + 2k, q; — 2b k, q4 + 2k, q5s = O (28)
I, 4, + 2hbk, g5 + 2b%, g, + 2bkg; = 0 (29)
L, g + 20k, + L’k) g5 4+ 2hq; =0  (30)
Lx Qs — 2bk, q; + 2(b°%k, + h’k,) q¢ — 2hk, g,

= [fycos(ut) + T, + T,cos(vt) — aqg (30

These equations can be divided into two sets. The first
set contains Eqs. (28), (29), and (30) and relates
g3, Q4 and qs to each other. These can be written in
the form

Q3 + 3q; + Agq + Tqs =
ds + 0qs + L4 + £q; =
ds + Hgqs + oq; =0 (32)

S o

From this set q;, q4, and q5 can be shown to be
identically equal to zero. Taking the Laplace
Transformation of Equation (32) (with zero initial
conditions), one obtains

(s* + 8) g3 + Agy + mgs = O

2 g+ (S + {)a+ 95 =0

g g3+ 0 + (*+p)gs=0

According to Cramer’s Rule this set of equations has
a non-trivial solution only when the matrix of the
system is singular, i.e. when

s2+ 8 A "
g s$ 4 ¢ 0 =0
o 0 & 4 p

But this occurs only for certain eigenvalues in the
s-plane, which is not a practical situation, since for a
practical problem s varies all over the complex plane
as the time varies. Thus the possibility of a singular
matrix cannot be considered and the solutions for q,,
ds, and qs will be identically zero (which are the same
as the initial values).

The second set, given by Eqgs. (26), (27) and (31),
can be written in the form.

q, + aq, — eqs = A cos(ut)

4, + cq; — dgg = B cos(ut)
d¢ + gps + 095 — fq; — pg; = H + F cos (ut)
+ G cos (vt) (33)

If the effect of q; on q, as indicated by Eq. (33) is
neglected we put e and f equals zero. This may be
considered a reasonable approximation since the main
motion of the moving system is around the x-axis .
Thus Eq. (33) gives

q, + aq; = A cos(ut)

4, + cq; — dge = Bcos (ut)

qs + 896 + 044 — pq; = H + F cos (ut)
+ G cos(vt) (34

Taking the Laplace Transformation with zero initial
conditions,

AS

* +a)q = FSa— (35)
@+ 06 == T ()
(s + 8S + g)as — pay =i;~

Ty F—E T szc—}%—s v2 (37
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These are three linear equations in q,, q,, and qg.
Solving for g,

qe(s) =
Fs(s> 4+ ¢ + Bp/F)
(s*+u) [s* + 0s® + (c+g)s® + cBs+(gc—dp)]

n H(s*+¢)
s [s* + 0s° + (c+g)s? + cBs + (gc—dp)]
+ Gs(s? + ¢)
(s + v?) [s* 4+ 0s* + (c+g)s? + cBs + (gc—dq)]

(38)
This equation can be factorized into simple fractions
in the form

B! P Y
q6(s)—s—°+ o5 T 5o ” + o (39)

where qq, 3, 5 v,7v's ... are generally complex. By
taking the inverse Laplace transform of Eq. (39) it can
be concluded that the d-c steady state reading of the

instrument is
GDa—c = qo

qp can be obtained by equating the right hand sides
of Egs. (38) and (39), multiplying by s and letting s
tend to zero; thus
Hce
gc— dp (40)
When no external mechanical force is present the
moving part of the instrument is allowed to move
around the axis only . Thus

GDa—c = 90 =

QG + 095 + 89 = H + G cos(vt)
where the constants 0, g, H, and G are same as before.
The d—c steady state reading when no external force
exists is

9 a_. = H/g = q) (41)
From Eqs. (40) and (41) one sees that the d—c steady
state reading of the instrument in the presence of an
external vibrating mechanical force is greater than its
reading in the force’s absence. An error factor can be
determined from Egs. (40) and (41)

90 ., _ _9p

9o 8¢ 42)
The value of (dp/gc) can be determined from Egs.
(33) and Eqgs. (26) — (31).

Error factor =

Journal of Eng. Sci, Vol. 1, No. 2, June 1975
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dp | ,
i 43)
gc 1 + b2k N

h” k,

Another simplification can be considered by taking
k, = k,, i.e. the stiffnesses of the springs in the
z and y directions are the same. Note that this is a
reasonable approximation since both directions are

normal to the main axis of rotation. Thus,

dp _ 1
ge 1+ (by? (44)

(+)

As a numerical example consider a practical coil of
dimensions 2h = 0.6 cms, and 2b = 2.5 cms,

:% = ﬁ,— = 0.0545 or 5,4 percent

(03)

The error given by Eq. (44) can be greatly reduced by
selecting a coil such that b is much greater than h,

REFERENCES:

(1) H. Goldstein, Classical  Mechanics, Addison
Wesley Publishing Co., Inc. 1960.

(2) F. Gantamacher. Lectures in Analytical Mecha-
nics, Mir Publishers Moscow USSR 1970.

(3) Chen C.F. and Phillip B.L., “Graphical Deter-
mination of Transfer Function Coefficients of a
system from its Frequency Response,* IEEE
Trans. Applications and Industry, pp 42-45, March
1963.

(4) C.F. Chen, “A New Formula for obtaining the
inverse Laplace Transformation in Terms of

Laguerre Functions,” IEEE International Conf.
1966, 14, pp 281-287.

(5) F.W. Golding and F.C. Widdis, Electrical Measu-
rements and Measuring Instruments, Pitman,
London, 1962.

College of Eng. Univ. of Riyadh





