
J. Eng. Sci., Univ. Riyadh, 6 (1), pp. 57-61 (1980) 

On The Vibrations of Elastic Plates 
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The modes of vibration of a thin elastic plate are investigated for the two well-known 
conditions: the clamped and the simply-supported plate. Some relations are obtained 
between the two sets of eigenfunctions. 

In the absence of external forces, and under suitable 
assumptions (see, for example, [1]), the lateral 
deflection of a thin elastic plate which lies in the xy
plane is governed by the linear equation 

(1.1) 

where w = w(x,y,t) is the deflection perpendicular to the. 
02 02 

xy-plane, II = Ox 2 + oy2' 112 = llll, t is the time variable, p 

is the mass density per unit area of the plate and F is the 
flexural rigidity defined by 

Here E is Young's modulus, h is the plate thickness and 
v is Poisson's ratio. 

In order to obtain the free vibrations of the plate, 
we assume that the motion is harmonic in time with 
frequency w, i.e. 

w(x,y,t) = u(x,y)f(t) and 

This, together with eq. (1.1), imply 

(1.2) 

Equation (1.2), which gives the freevibrations of the 
plate as the eigenfunctions of the operator 112, has been 
studied extensively for various boundary conditions 

and has been completely solved for certain shapes of the 
plate. In particular, the rectangular plate which is 
simply supported at its edges, i.e. for which u satisfies 
the boundary condition 

02U 
U =an2 =0, 

where n is the normal to the boundary, offers no 
difficulty. The circular plate which is clamped at its 
boundary, i.e. for which 

ou 
u=--=O on 

on the boundary, can also be solved by separation of 
variables (see [2]). In the first case the eigenfunctions 
are sine functions and in the second case they are certain 
combinations of Bessel functions. However, the 
clamped rectangular plate and the simply supported 
circular plate have no solutions in terms of known 
functions. It is always possible, of course, to map one 
region conformally onto the other and attempt to solve 
the image of eq. (1.2) in the desired region. But the 
complexity of the resulting equation offers little hope of 
yielding anything more than a numerical 
approximation. 

Since, under suitable assumptions, the eigenvalue 
equation (1.2) is known to have a complete set of 
orthogonal eigenfunctions, the difficulty that we face 
would seem to be a limitation on the method of 
separation of variables. In this state of affairs, where the 
eigenfunctions are known for one boundary and 
unknown for another, it may be interestiftg to 
investigate the relation between the two sets of 
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eigenfunctions. It turns out, not surprisingly, that this 
relation is governed by the relation between the 
corresponding Green's functions, and that the Green's 
functions differ one from the other by certain 
reproducing kernels. 

Existence and Properties of the Eigenfunctions 

Let 0 be a finite open region in R 2 with a piecewise 
smooth boundary 00. For any two functions u and v 
defined on D=OUOO we obtain by two successive 
applications of Green's formula 

where n is the outward normal to 00 and s is the 
variable of length along 00, provided these integrals 
exist. Let u be a solution of (1.2) which is three times 
differentiable in O. Then (*) 

a au 
H uLVudxdy = JS(Llu)2dxdy + J(u on Llu - On Llu)ds. 

In order that the operator Ll2 be symmetric we shall 
assume that 

a au 
u--Llu --Llu =0 

On on 
on 00, 

and if the boundary conditions on u are to be 
homogeneous then we have four possibilities on 00: 

(i) au 
u=-=O 

On 

(ii) u=Llu=O 

(iii) 
au a 
-=-Llu=O 
On On 

(iv) 
a 

Llu=-Llu=0 on . 

As we have already mentioned, the first and second 
boundary conditions describe a clamped and a simply 
supported edge, respectively. The third boundary 
condition describes an elastically supported edge and 
the fourth a free edge. Under boundary conditions (i) 
and (ii) it is evident that Ll2 is positive definite, since it is 
positive and 

=0 

~Llu=Oin 0 

~ u=O in 0 when u=O on 00 

by the maximum principle for harmonic functions. We 
shall now show that we need only consider boundary 
conditions (i) and (ii), since (iii) and (iv) do not offer any 
significant additions to the eigenfunctions of (1.2). 

Since 

AHu 2dxdy= Hu~2udxdy 

= JS(Llu)2dxdy 

~O 

we may assume without loss of generality that ..1.= k4
, 

where k is a real number. Eq. (1.2) is then equivalent to 
the pair of second order equations 

(2.2) 

(2.3) 

in which u and v appear symmetrically. Since boundary 

condition (iv) may be expJessed as v = :: =0 on 00 for 

the differential equation Ll2v = k4 v = AV we conclude 
that every non-zero eigenvalue under boundary 
condition (i) corresponding to the eigenfunction u is 
also an eigenvalue under boundary condition (iv) 
corresponding to the eigenfunction v = k - 2 Llu. For the 
case when ..1.=0 it is not difficult to see that boundary 
condition (iv) implies u is an arbitrary harmonic 
function in O. 

In order to see the significance of condition (iii) we 
rewrite equation (1.2) in the form 

which is equivalent to the pair of equations 

(2.4) 

(2.5) 

-Double and single integrals are henceforth to be taken over D and aD respectively, unless otherwise specified. 
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Condition (ii) implies that v = 0 on GD while (iii) implies 
GV 

that Gn =0 on GD. From Green's formula 

Gv 
H v~vdxdy + HIV'vl 2dxdy = f v~s, 

and we conclude that equation (2.5) with either of these 
two conditions gives 

)kv=V'v=O in D 

k~O g>v=O in D 

k=O~v= constant in D . 

If (ii) holds then v = 0 on GD ;> v = 0 in D. 

If (iii) holds then X = 0 is an eigenvalue of (1.2) 
corresponding to the solutions of u = constant in D. 

Thus for A > 0 equation (1.2) under either boundary 
condifion (ii) or (iii) reduces to equation (2.4) with v = 0, 
i.e. 

(2.6) 

which is the well known equation for a vibrating 
membrane. Furthermore condition (ij) becomes u =0 

Gu 
on GD, and (iii) becomes Gn = 0 on GD. These two 

conditions are special cases of the more general 

boundary condition for the membrane ~~ + o"u = 0, 

which is discussed in [2], corresponding to 0" = co and 0" 

=0, and for which there exists a complete set of 

eigenfunctions and a corresponding increasing 
sequence of eigenvalues. Since each eigen value increases 
as 0" increaes, the nth eigenvalue under condition (ii) is 
equal to or greater than the nth eigenvalue under 
condition (iii).In either case the plate is seen to have the 
same eigenfunctions as the membrane, with each 
eigenvalue for the plate equal to the square of the 
corresponding eigenvalue for the membrane. 

In the special case when D is the rectangle 
{(x,y)IO<x<a,O<y<b} the eigenfunctions for the 
simply supported plate are 

vn Jln 
uVI'(x,y) = sin- xsin-y 

a b 
v = 1 ,2,3, ... ;Jl = 1,2,3, ... 

with corresponding eigenvalues 

Clearly, an in vestigation of the vibrations of a plate 
is essentially a study of equation (1.2) under boundary 
conditions (i) or (ii), to which we now devote our 
attention. There are, of course, the special cases of 
mixed boundary conditions for certain shapes of the 
plate, but we shall not get involved in these technical 
prob,lems. 

The Clamped and the Simply Supported Plates 

Let Q=C2(D)flL2(D)rlC(O) be the set of twice 
differentiable functions which are square integrable on 
D and continuous in D. We then have the usual inner 
product. 

(cp,I/I) = H cpl/ldxdy 

for any pair of functions cp,I/IEQ and the norm 

In order to simplify the notation we shall use the 
complex variable z = x + iy to denote points in D. Let 
g(z,z') be the Green's function for Laplace's equation in 

1 
D, i.e. g(z,z') + 2n log lz - z'l is harmonic and symmetric 

in both variables and g=O on GD. For any CPEQ 

u(z) = (g,cp) = Hg(z,z')cp(z')dx'dy' 

is a well defined function in C4 (D)OC 3(D) which 
vanishes On GD. We define the operator G on Q by 

Gcp = (g,cp). 

G is an inverse of - ~ in the sense that 

~Gcp = - cp for any CPEQ (3.1a) 

G~cp = - cp for any CPEQ which vanishes on GD 
(3.1 b) 

Let W = {u = GCPICPEQ} and for any pair u, vEW we 
define the inner product 

<u, v> =(~u,~v), 

which is well defined since ~u,~vEU(D) . Note that 
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cO, and that every function inWvanishes on oO.Let 

IIlulll = J < U,u > 

clearly Illulll;;;O and Illulll =0 ~u is harmonic in 0 
and vanishes on oO=:.u = 0 by the maximum principle 
for harmonic functions 

We seek the eigenfunctions of the operator ~2 in 
the set W which satisfy either of the two boundary 
conditions 

au 
-=0 (clamped plate) an 

~u = 0 (simply supported plate) 

The function 

S(z,z') = SIn Iz - z'1 2loglz - z' l 

(3.2a) 

(3.2b) 

is the fundamental biharmonic singularity which plays 

the same role for the operator ~2 as-2~ log Iz-z'l 

plays for ~. i.e. S satisfies the biharmonic equation 
~2S =0 except at z=z' and ("'j 

a au a aS . 
u(z) = r(u-· -~'S - --~'S - &:-:-~u + -~'u)ds' 

J an' an' an' an' 

for any biharmonic function u. Let r(z,z') and y(z,z') be 
the Green's functions for the biharmonic equation 
under the boundary conditions (3.2a) and (3.2b) 
respectively, i.e. r - Sand y - S are biharmonic in o,r 

or 
= an =0 on 00, and y=~y=O on 00 in each of the 

variables z and z'. 

Let uEW satisfy 

(3.3) 

from Eq. (2.1) 

SS(u~'2v-v~'2u)dxdy = J(u~. ~,v __ au ~'v-v~~'u 
an" an' an' 

ov A' )d , + on,Ll us. 

·Primed symbols are taken in the variable z'. 

(3.4) 

If we replace v(z') by r(z,z') and 0 by 0 - {z'llz' -zl < e}, 

take the limit as e-->O, and use the properties of u and r 
w.e obtain 

a 
u(z) = JeHr(z,z')u(z')dx'dy' - J~'(z,z'~u(z')ds'. 

On the other hand, replacing v by y gives 

a 
u(z) = 4 J y(z,z')u(z')dx' d y' + J~' u(z'~ Y(z,z')ds' 

If u is a solution for the simply supported plate, i.e. 
~u~-O on 00, then 

u=),Hyudx'dy' (3.5) 

where u 1 (z) = ),Hr(z,z')u(z')dx'dy' satisfies 

a 
while U2(Z)= - J~T(z,z'~u(z')ds' satisfies 

(a) ~2U2 =0 in 0 since ~TloO' is biharmonic in O. 

(b) 

(c) 
oU2 au 
-=-::;- on 00. 
an On 

Thus we can write 

U2 = - J~T~ds' 
an' 

from (c) 
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where k(z,z') = - ~~T(z,z'). From Green's identity 

(3.5) 

from (b) and the fact that k is harmonic in D. 

This property of k follows from the identity ~~'S = 0 
which is satisfied everywhere in D x D, including z = z' 
(see [3J). We shall now show that k is the reproducing 
kernel (see [4J) for the class of square integrable 
harmonic functions in D, whi'Ch we denote by H2(D). 
Let 

Since H2(D) c Q we have Wo c W. And since H2(D) with 
the inner product (.,.) is a Hilbert space (H. Weyl 
theorem) it follows thatW owith the inner product <: .,. > 
is also a Hilbert space. For any <pEH 2(D), u = G<pEWo 

is biharmonic and we can use the identity (3.4) with v 
replaced by r to obtain 

= mk~'u-u~'k)dx'dy' 

by Green's identity. Since k is harmonic in D x D and 
~'u = - <p we finally obtain 

<p = (k,<p) for every <pEH2(D), 

which means that k(z,z') is the rep rod ucing kernel of the 
Hilbert space H2(D) and may be represented by the 

00 

infinite sum I !/tvfz)!/tv(z'), where {!/tv} is any 
v = 1 

orthonormal basis ror HZ(D). 

From equation (3.5) 

~U2 = Hk~'u2dx'dy' 

= Hk(~'u -~'uI)dx'dy' 

= Hk~'udx'dy' - [JSuI~'kdx'dy' 

= Hk~'udx'dy' 

from the properties of k and u I' In view of (3.1 b) and 
(3.3), and since ~'u =0 on aD, we can write 

= -,1,Gu . 

Therefore 

~UZ = - ,1,HkGudx'dy'. 

Since U z =0 on aD we can use (3.1b) again to obtain 

= ,1,HGkGudx'dy' 

= ,1,HKudx'dy', 

where K(z,z')= SSSS~(z,Ok((,(')g(",z')dtdrl'd~dll 
DxD 

and (= ~ + il]. Thus the representation (3.5) now takes 
the form 

u=,1,mr+K)udx'dy' (3.6) 

where K = y - r is the difference between the 
biharmonic Green's functions for the simply supported 
and the clamped plates. K itself may be regarded as the 
reproducing kernel for the Hilbert space W o, since for 
any UEWo3:<pEH Z(D) such that u =G<p and 

< k,u> = H~'K~'udx'dy' 

~'K(z,z')= - Hg(z,Ok((,z')dCdl] 

= -Gk(z,z') 

~'u= -<p 

==::::9 < K,u > = HGk<pdx'dy' 

=G(k,<p) 

=G<p 

=u. 

This reproducing property defines K uniquely, just 
as k is uniquely defined by its reproducing property in 
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H2(D). It is worth noting that k itself may be expressed 
as the difference between the harmonic Green's function 
g and Neumann's function N (see [5]), so that an 
interesting analogy may be drawn between Y,r,K and 
the operator ~2 on the one hand, and g,N,k and the 
operator ~ on the other. The problem we face in 
constructing a solution to the clamped rectangular 
plate is tied up with the problem of obtaining k, or 
equivalently, of constructing a basis for the harmonic 
functions in the rectangle. Such a basis exists but cannot 
be expressed explicitly in terms of known functions. 

Although the component U1 of u satisfies the 
boundary conditions of the clamped plate it is not quite 
the' solution of the clamped plate because it is not an 
eigenfunct,ion of ~2. However we shall now see that, in a 
sense, it is the projection of u on that solution in the 
geometry of W. First of all we have 

o 
~Ul.LU2 in W. 

Let v f W be a solution of the clamped plate 
problem, i.e. 

av 
~2V=J.l.V in D and an =0 on aD. 

Then 

<V,U2> = H~vu2dxdy 

= 0 

=} V.lu 2 

Conclusion 

au 
The two boundary conditions ~u =Oand an =Oon 

the solutions of equation (1.2) may be considered as 
limiting cases of the more general boundary conditions 

(4.1) 

with 0" =0 and 0" = 00 respectively. This new boundary 
condition, taken of course together with u =0 on aD, 

a2u 
has the following interpretation: Since ~u = an2 is 

proportional to the normal bending moment on the 
boundary [1], which has to be zero for the simply 
supported plate, equation (4.l) describes a situation in 
which the bending moment is proportional to the 

au 
normal slope of the plate surface an at the boundary. 

This clearly describes the situation when the plate edge 
is clam{Yed by an elastic support, whose elastic 
coefficient may be measured by 0". 

This case will be the subject of a separate study, 
which may reveal a little more about the connection 
between the two limiting cases treated in this paper. 
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