Synthesis of a Four-Bar Linkage for a Limited Variation in the Velocity Ratio

Mahmoud A. Moustafa
Professor of Mechanical Engineering, Faculty of Engineering, Alexandria University, Egypt.

In this work, a synthesis of the four-bar linkage for a prescribed maximum value of the velocity ratio, and a preassigned variation over a certain region is presented. The analysis yields a group of highly nonlinear equations which cannot be solved analytically. An algorithm which incorporates the double lalse method is suggested for solving these equations. A computer program written in Fortran -4 has been used.

Nomenclature

$\theta \quad$ rotational angle of the crank
$\varphi \quad$ rotational angle of the rocker
E length of the crank
C length of the coupler
R length of the rocker
S distance between the crank and the rocker pivots
n velocity ratio
n* maximum velocity ratio

Introduction

Synthesis is related to specifying the dimensions of the links of a mechanism to yield a certain uutput requirement. It has been developed rapidly in the past lew years due to its great practical importance

Synthesis of the four-bar mechanism is presented in several text books, e.g. $[1,2]$. It is possible to design a four-bar linkage for different output requirements such as function generation which satisfies several position points. optımization of the transmission angle. development of coupler curves, and so forth. Several investigations were made for the kinematic synthesis of
the four-bar linkage which involve output angular velocity conditions, e.g. [1,3,4,5].

Starting from an extreme position, the ratio of the angular velocity of the rocker to that of the driving link increases until it reaches a maximum value. It decreases back to zero at the other extreme position. It is possible to adjust the lengths of the links to obtain prescribed velocity ratios [3]. Also, the design of a four-bar linkage to give a prescribed maximum value of the velocity ratio is presented in [5]. There is a region within which the velocity ratio is almost uniform. It is true that the maximum length of the region, for a limited variation in the velocity ratio, includes the extreme value. The purpose of this work is to present a synthesis for a prescribed velocity ratio, and a predetermined velocity ratio variation over a certain region.

Kinematics of a four-bar linkage

For the four-bar linkage shown in Fig. 1, the relation between the rocker angle and the crank angle is obtained from the vector relation

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}+\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{S}}+\overrightarrow{\mathrm{R}} \tag{1}
\end{equation*}
$$

When each vector is represented in terms of the components along and normal to S, Eq. (1) takes the form

$$
\begin{gather*}
\mathrm{E} \cos \theta+\mathrm{C} \cos \gamma+\mathrm{R} \sin \varphi=\mathrm{S} \tag{2}\\
\mathrm{E} \sin \theta+\mathrm{C} \sin \gamma=\mathrm{R} \cos \varphi \tag{3}
\end{gather*}
$$

Fig. 1: The Four-Bar Linkage
Eliminating γ from Eqs. (2), and (3) and replacing the lengths of links by their ratios to S , one gets

$$
\begin{equation*}
\sin \varphi=\frac{a b \pm \sqrt{b^{2}+d^{2}-a^{2}}}{b^{2}+d^{2}} \tag{4}
\end{equation*}
$$

Where

$$
\begin{align*}
& \mathrm{a}=1+\mathrm{e}^{2}+\mathrm{r}^{2}-\mathrm{c}^{2}-2 \mathrm{e} \cos \theta \\
& \mathrm{~b}=2 \mathrm{r}(1-\mathrm{e} \cos \theta) \tag{4a}\\
& \mathrm{d}=2 \mathrm{re} \sin \theta \\
& \mathrm{e}=\frac{\mathrm{E}}{\mathrm{~S}} \tag{9}\\
& \mathrm{c}=\frac{\mathrm{C}}{\mathrm{~S}} \\
& \mathrm{r}=\frac{\mathrm{R}}{\mathrm{~S}} \tag{10}
\end{align*}
$$

Where φ_{2} is the rocker angle corresponding to θ_{2} and is obtained by Eq. (5); i.e.

$$
\sin \varphi_{2}=\frac{a_{2} b_{2}-\sqrt{b_{2}^{2}+d_{2}^{2}-a_{2}^{2}}}{b_{2}^{2}+d_{2}^{2}}
$$

where $\mathrm{a}_{i}, \mathrm{~b}_{i}$, and d_{i} are given by Eq. (4-a) for θ equal to θ_{i}. Also, θ_{2}, φ_{2}, and n^{*} satisfy Eq. (6). That is

$$
\left.\mathrm{n}^{*}=\frac{\mathrm{e}}{\mathrm{r}}\left[\frac{\mathrm{r}}{\mathrm{r} \cos \left(\theta_{2}-\varphi_{2}\right)-\sin \theta_{2}}\right] \operatorname{ecos}\left(\theta_{2}-\varphi_{2}\right)-\cos \varphi_{2}\right]
$$

Similarly

$$
\begin{align*}
& \lambda n^{*}=\frac{\mathrm{e}}{\mathrm{r}}\left[\frac{\mathrm{r} \cos \left(\theta_{1}-\varphi_{1}\right)-\sin \theta_{1}}{\operatorname{ecos}\left(\theta_{1}-\varphi_{1}\right)-\cos \varphi_{1}}\right] \tag{11}\\
& \lambda n^{*}=\frac{\mathrm{e}}{\mathrm{r}}\left[\frac{\mathrm{r} \cos \left(\theta_{3}-\varphi_{3}\right)-\sin \theta_{3}}{\operatorname{ecos}\left(\theta_{3}-\varphi_{3}\right)-\sin \varphi_{3}}\right] \tag{12}
\end{align*}
$$

The values of θ_{1}, and θ_{3} may be specified in terms of θ_{2} such that

$$
\begin{align*}
& \theta_{1}=\theta_{2}-\psi^{\prime} \tag{13}\\
& \theta_{3}=\theta_{2}+\psi^{\prime \prime} \tag{14}
\end{align*}
$$

Fig. 2: The relation between n and θ

The corresponding values of φ_{1}, and φ_{3} are obtained from Eq. (5). Hence

$$
\begin{align*}
& \sin \varphi_{1}=\frac{a_{1} b_{1}-\sqrt{b_{1}^{2}+d_{1}^{2}-a_{1}^{2}}}{b_{1}^{2}+d_{1}^{2}} \tag{15}\\
& \sin \varphi_{3}=\frac{a_{3} b_{3}-\sqrt{b_{3}^{2}+d_{3}^{2}-a_{3}^{2}}}{b_{3}^{2}+d_{3}^{2}} \tag{16}
\end{align*}
$$

Equations (8) through (16) are nine simultaneous equations which may be solved for nine unknowns. If the values of $\mathrm{n}^{*}, \lambda, \psi^{\prime}$, and $\psi^{\prime \prime}$ are specified, these unknowns are e,c,r, $\theta_{1}, \theta_{2}, \theta_{3}, \varphi_{1}, \varphi_{2}$ and φ_{3}.

The analysis may be simplified by dropping the equations concerning θ_{3} since they will be automatically satisfied except $\psi^{\prime \prime}$ which is to be determined after the synthesis. Also, it is advantageous not to use all the parameters of the mechanism, but leave some freedom which can be used to fulfil space requirements [2]. Hence, there are six equations which can be solved for $\mathrm{r}, \mathrm{c}, \theta_{1}, \theta_{2}, \varphi_{1}$, and φ_{2}. The value of e is selected according to design considerations.

Even with six equations an analytical solution cannot be obtained due to their high nonlinearity. Instead, a numerical scheme is suggested which yields satisfactory results.

Algorithm for the Numerical Solution

The system of equations to be solved are Eqs. (8), (9), (10), (11), (13), and (15). Equations (8), (10), and (11) are written in the forms
$\mathrm{F}_{1}=\mathrm{er}\left(1-\mathrm{n}^{*}\right)^{2} \sin \left(\theta_{2}-\varphi_{2}\right)+e \cos \theta_{2}+\mathrm{n}^{* 2} \sin \varphi_{2}$
$\mathrm{F}_{2}=\mathrm{er}\left(1-\mathrm{n}^{*}\right) \cos \left(\theta_{2}-\varphi_{2}\right)-\mathrm{e} \sin \theta_{2}+\mathrm{rn}^{*} \cos \varphi_{2}$
$\mathrm{F}_{3}=\mathrm{er}\left(1-\mathrm{n}^{*}\right) \cos \left(\theta_{1}-\varphi_{1}\right)-\mathrm{e} \sin \theta_{1}+\mathrm{rn}{ }^{*} \cos \varphi_{1}$
The proper values of c and r make $\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{3}=0$.
An iterative scheme using the double false method [6] is described as follows:

1. A value for $\mathrm{r}<1+\mathrm{e}$ is assumed. A good starting value is $r=e / n^{*}$.
2. The allowable range of c is

$$
1+e-r \leqslant c \leqslant 1-e+r
$$

Thus, a starting value for c is taken equal to $1-\mathrm{e}+\mathrm{r}-\varepsilon$; ε is a smali quantity.
3. A starting value for θ_{2} is assumed.
4. The corresponding value of θ_{2} is computed from Eq. (9).
5. $\quad F_{1}$ is calculated from Eq. (17).
6. Other values for θ_{2} are assumed. Steps 4 , and 5 are repeated until the sign of F_{1} is changed.
7. The double false method is applied until the magnitude of F_{1} is less than a permissible amount of error, say in the order of 10^{-6}.
8. Equation (21) is used to evaluate F_{2}.
9. The value of c is changed. Steps 3 through 8 are repeated until the sign of F_{2} is changed.
10. The double false method is applied until the value of F_{2} is less than 10^{-6}. The values of θ_{2}, φ_{2}, and c obtained thus far satisfy Eqs (8), (9), and (10).
11. Steps 2 through 7 are repeated.
12. The value of θ_{1} is obtained from Eq. (13).
13. Equation (19) is used to compute F_{3}.
14. The value of c is changed, and steps $3,4,5,6,7,12$, and 13 are repeated until the sign of F_{3} is changed.
15. The double false method is applied until the value of F_{3} is less than 10^{-6}. The values of $\theta_{2}, \theta_{1}, \varphi_{1}$, and c obtained satisfy Eqs. (13), (15), (17), and (19).
16. Several values for r are assumed according to the restriction in step 1. For each, the values of c from steps 10 , and 16 are determined. A plot will yield two curves representing $\mathrm{F}_{2} \simeq 0$, and $\mathrm{F}_{3} \simeq 0$ which intersect at a point, Fig. 3 The values of r , and c at this point are the proper values. It is clear that if the difference between the values of c are plotted

Fig. 3: Variation of C with r
versus r , a single curve is obtained (indicated by the dotted line, Fig. 3). In this case, the double false method can be applied to determine the proper values of c and r.

References

1. Hain, K., Applied Kinematics. McGraw-Hill Book Company, pp. 464-468 (1967).
2. Shigley, J.E., Kinematic Analysis of Mechanisms, McGrawHill Book Company, pp. 326-356 (1969).
3. Tuchy, E.J., Synthesis of the Four-Bar Linkage to Match Prescribed Velocity Ratios, ASME - Paper No. 58-4-115.
4. Worthy, W.W., Four-Bar Linkage-Approximate Synthesis, ASME - Paper No. 58-A-130.
5. The Synthesis of a Four-Bar Mechanism for Prescribed Extreme Values of the Angular Velocity of the Driven Link, ASME Paper No. 58-A-2.
6. Ostrowski, A.M., Solutions of Equations and System of Equations, Academic Press, New York (1966).

تصميم آلية رباعية الأذرع ذات تغير محدود في نسبة السرع

عكمود عبد المتاح مصطى

