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Generalization of Single-Span Beam for Ponding 
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The ponding of single span with various end conditions is generalized in the present 
paper. The normal mode shape for vibration of corresponding beams with similar end 
conditions is utilized. 

Closed form for deflections, moments, shears and slopes as well as ponding 
factor expressions are derived. Several cases of pre-ponding deflection are utilized in 
the numerical examples to demonstrate the methods and the significance of the 
ponding factor is explained. 
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Introduction 
This is the third paper in a series of articles dealing 

with Ponding of Liquid on Flat Roofs. The previous 
papers treated various cases of loading of single spans 
and/or initial imperfection combined with ponding. 
Several end conditions have also been considered. 
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A generalization of the ponding problem of a single 
span with various end conditions and different types of 
loading is the subject of the present paper. Series 
representing the normal mode shapes of a vibrating 
beam with the prescribed end conditions is used to 
express the deflection of the preponding shape. Closed 
form solution of the deflections and the critical ponding 
factors are developed. Numerical examples for various 
pre-ponding deflections are utilized to demonstrate the 
method. 

General Approach 
The problem of ponding of a single-span beam 

having any of several end conditions can be handled by 
using infinite series analogous to Fourier series. The 
deflection due to imperfections, applied loads, and 
liquid loads above su~port level can be expressed as a 
series of the form. 

(1) 

Specifically, the (fJ" functions are the normal mode 
shapes which the beam with the prescribed end 
conditions takes on in free vibration. 

Free Vibration of Beam 
The solution to the problem of free vibration of a 

prismatic beam can be found in most books on 
vibrations in engineering. The differential equation of 
motion is 

(2) 

This can be put in the form 

--=-- or ot 2 
(3) 

in which 
EI 

a 2 =_ 
m 

By separation of variables the following two differential 
equations can be obtained 

(4) 

in which w2 is a positive constant. 

The second part of equation (4) can be written in the 
form 

(5) 

in which 

It is seen that equation (5) is identical in form to the 
drived ordinary differential equation (1) for the 
weightless, initially-straight beam subject to ponding 
[1]. Since the boundary conditions are identical, the 
deflection of the ponded beam is the fundamental 
normal mode shape of the vibrating beam. 

The solution is 

y = Asin/3x + B cos /3x + C Sinh/3x + OCosh/3x (6) 

The solutions exist only for certain discrete values of /3, 
as illustrated below for the case of the fixed-ended beam. 

The boundary conditions are: 

x=O, y=O: A(O)+B(I)+C(O)+O(l)=O 

x =0, y,1 =0: A(l)- B(O) + C(l) + 0(0)=0 

x=L, y=O: Asin /3L+B cos {3L+C Sinh 
Cosh{3L=O 

x=L, y,l=O: Acos {3L-B sin/3L+C Cosh 
Sinh/3L=O 

From equation (a) 

B= -0 

And from equation (b) 

A= -C 

(a) 

(b) 

/3L+O 
(c) 

/3L+O 
(d) 

substituting the values of C & 0 in equations (c) and (d) 
and expressing B in terms of A, 

Therefore 

A(cos 2{3L - 2cos{3LCosh/3L+ Cosh2/3L - Sinh{3L 
+sin 2{3L) =0, or 
A(2-2 cos{3L Cosh/3L)=0 (e) 
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This can be satisfied if either A or the term in 
parentheses is equal to zero. If A equals zero, however, 
then B,C, and D, which are related to it are also zero, 
and this is a trivial solution. 

Setting the second term equal to zero, one has a 
transcendental equation with an infinite number of 
discrete roots (eigen values) 

Therefore 
1 - cos/3L Cosh/3L = 0 (7) 

Such a relation has the following roots: 

Substituting of these roots into equation (6) gives the 
various normal mode shapes (eigen functions) 
associated with the roots. For example, the 
fundamental mode shape is: 

x x x 
y = B 1 [Cosh4. 730- - cos4.730- - O.9825Sinh4. 730- ] 

L L L 
(8) 

B1 is undetermined, and can have any value. 

The various natural circular frequencies can be 
obtained from 

2fEI 
w"=(/3"L )V~-. 

mL4 

The various natural frequencies can be found from 

(9) 

The natural frequencies are thus seen to be dependent 
on E, I, and L of the beam and on the boundary 
conditions through the /3" values. 

The normal mode shapes of a single span of a prismatic 
beam with any combined end conditions form a set of 
functions orthogonal over the interval described by the 
span of the beam. The deflection y;, in the ponding 
problem can be expanded into an infinite series of these 
functions. 

The condition of orthogonality means that 

for m=n (10) 

Where CPm and CPo are eigen functions of arbitrary 
amplitude, such amplitudes may be chosen to make 

~ : cp~dx = any constant (11) 

If this constant is taken as unity, the functions are said 
to be normalized. A well-known set of tables of normal 
mode shapes for the most commonly considered end 
conditions are those of Young and Felgar [2]. They 
chose the amplitudes such that 

(12) 

For these functions, a beam deflection can be expressed 
into an infinite series of the form 

<Xl 

Yi = A1 CP1 + A2CP2 + A3CP3 + ... A"cp" = LA"cp" (13) 
1 

Multiplying both sides of the equation by CPm and 
integrating between the limits of 0 and L, noticing the 
value of each integral is zero except for the one term in 
which m = n. For this term, the value is L, and one 
obtains 

(14) 

From which 

A" =- YiCP"dx IlL 
L 0 

(15) 

This is the equation for the coefficient of the general 
term of the series. 

The solution to the general case of the single span beam 
subjected to ponding can now be formulated. The 
additional deflection, Y2' due to ponding is expressed in 
the following differential equation 

(16) 

(17) 

The particular solution will be an infinite series of cp". 
Each term in the series satisfies the boundary conditions 
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since they are the same for both vibrating beam and 
ponded beam. The complementary solution therefore 
vanishes, and the complete solution consists of the 
particular solution alone, which is 

00 

Yl = n~1 CnAnqJn (18) 

Where qJn are solutions to the vibrating beam problem, 
so that 

Y2 is then found frOll 
00 00 00 

n~1 C nA np4qJn - k4 n~1 C.AnqJn =k4 .~1 AnqJ. 

Therefore 

The total deflection, y, is given by 

00 00 k4 

Y=Y;+Y2= .~IAnqJ.+ n~lp4_k4A.qJ. 

Therefore 
00 1 

Y = L (y;)n--
4 

.=1 k 
1-

p4 

(19) 

(20) 

(21) 

(22) 

(23) 

Young and Felgar tabulate the values of P.L for the first 
five terms. 

The deflection can now be expressed as, 

00 

y= L (YI)n--
k
-4-L-4 

.=1 1~--

(P.L)4 

(24) 

The terms 1/ { 1 - (~:~ 
4
)4 } are the deflection mag

nification factors of the various terms of the series. 

The moment due to ponding may be obtained by 
differentiating equation (24) twice. Young and Felgar 
give values for the second derivative of qJn with respect 
to PoX which can be used in this computation. 

F or many practical cases, only the first term of the series 
need be used. It is the only one which can physically 

become large, since all other terms require negative 
ordinates as well as positive ones. 

The effect of ponding on a fixed-ended beam is 
illustrated in the examples presented at the end of this 
paper. 

Significance of Critical Ponding Factors 

The critical ponding factor is of littl~ practical 
value as a limiting criterion to prevent ponding failures. 
It is a stability limit for a sustained storm situation, and 
as such, is analogous to the Euler load for a beam
column. If a beam has a greater-than-critical ponding 
factor, failure is certain. It it has one less than critical, 
failure may still occur because the beam may · not be 
strong enough to carry the added load of the ponded 
liquid. Examples have been found in which failure 
occurred even t hough the ponding factor was only 0.3 of 
the critical. 

Calculation of Critical Ponding Factors 

The generalization of the single-span beam 
problem by expanding the pre-ponding deflection into 
an infinite series of normal mode shapes brings out the 
reason that the critical ponding factor is independent of 
load. The critical ponding factor can be defined as that 
one which will result in infinite deflections in a sustained 
storm with the beam depression always being fully 
filled. Any pre-ponding deflection can be expressed as 
an infinite series of normal mode shapes. Only the first 
term of the series can physically become large, however, 
for it is the only mode shape which has all positive 
ordinates. All other have both positive and negative, 
and a large negative ordinate would extend above the 
liquid surface. 

An examination of the differen tial equa tions (19) reveals 
that y in the ponding problem [1] is the counterpart of 
mw2 in the vibrating beam problem. The critical 
ponding factor can then be evaluated as 

y=mw2 

The critical ponding factor is given in reference [1] as, 

Therefore 

where 
EI 

w~=P!-, 
m 

Journal of Eng. Sct.-Vol. 6- No. 1-1980- Col/ege of Eng., Univ. of. Riyad. 



A.H. Mansouri and J. Chinn 

where PI refers to the fundamental frequency 

therefore 

(25) 

Moments in ponded beams can be easily calculated 
using the Young and Felgar tables for as many terms of 
the series as desired. 

Example 1 

Initial imperfection having same shape as first 
characteristic mode. For the first mode, the deflection, 
Yi will be 

For x=L/2, Yi=~o 
Yi =A(<PI)" = L/2; 

~o 
A=---

1.58815 

The final deflection value, y, will be 

At 

( 
<PI~O)'- 1 ] 

y(x)= 1.58815 l KL 4 

1-(-) 
4.73 

x = L/2, Y = ~max 

or 
fimax 

kL 
1_(_)4 

4.73 

~mgx ->00 as kL-> 4.73 

CaLculation of the Moment M 

~a<PI 
y(x) x MF 

1.58815 

Tabular 

Since Y2 is the additional deflection due to ponding, 

Pi<P1.2 x MF 
1.58815 

d
2

Y2 (EI<P1,2)[ ~o ] 
M(x)= - EI dx2 = - 1.58815 4.73 

(_)4_1 
kL 

EI 473 [~o] = - ( ) x (-' _)2 X <P 2(PX) ---
1.58815 L . 4.73

4 (- ) -1 
. kL 

At x=O, <P.2(O) = 2 

M(O) = - 28.17- 0 EI[ ~ ] 
L2 4.73 

(_)4_1 
kL 

L 
At x=2' <p.2(L/2)= -1.21565 

Therefore, 

M(L/2)= + 17.125~o(EI)[ __ 1-J 
L2 4.73 

(_)4_1 
kL 

As kL->4.73, M->oo 
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Example 2 

Initial inperfection in shape of half sine wave. This 
example was worked in Ref. [3] using Fourier series, 
but as was pointed out, it yielded an awkward solution. 

nx 
Y ·(x)=~ sin-

I 0 L _x 
y 

CfJn = CoshPnx - cosPnx - an(SinhPnx - sinPnx) 

For the first mode, n = 1 

1 rL 
An =iJ y;CfJndx 

° 
Al =~ \L(~;sin nX)[CoshPlx-cosP1x-a1(sinhPlx 

LJO L . 

- sinp 1 x)]dx 

Therefore 

For the first mode, P1L=4.73, a1 =0.9825 then, 

y= (Cosh4.73 + 1 ( 
~oCfJl )[ 1 

kL 4.73 
n[1-(- )4] 1 +(- ? 

4.73 ~ 

- 0.9825Sinh4. 73) 

+( 1 \0.9825sin4.73 _ cos4.73 -1)] 
4.73 I 

1-(- ? 
n 

thus y=0.6973~oCfJl[ ~L] 
1-(_)4 

4.73 

at x=L/2, CfJl (L/2) = 1.58815 and Yl(L/2)=~ 

i.e. 

~=(0.6973 x 1 .58815~o)[ ~L_l 
1_(_)4J 

4.73 

~ = 1.l074~o[ ~L] 
1_(_ )4 

4.73 

~o could be any real positive number other than zero. It 
is clear that 

as kL-'4.73, ~-. 00 

Since yz is the additional deflection due to ponding, 

M = _(0.6973EI)x 22.3729 x 
473 (L2 )·CfJ.z(P) 
(_'_)4_1 

kL 
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Therefore EI[ q>'l ] 
M = - 15.600MoLz -4-.7-3--

(_)4 _ 1 
kL 

At x =0, q>.z(0) = 2 

Thererore 

M(O) = - 31 .202~o2 EI[ 1 ] 
L 4.73 

(_)4_1 
kL 

At x=L/ 2, q> .Z(L/2) = l.21565. 

Thererore, 

M(L/2) = 18.965~o~![-4-. 7-31
--] 

(_ )4_1 
kL 

It should be noticed that ror both expressions or the 
moments, 

As kL -+4.73, M-+ oo 

Example 3 

Initial imperrection in shape or a parabola. 

~tf'l-=~~-~'::::=--~=----L-I-2-=---=~-==l=f~_O~_~::Goof'l --[> x 

y 

y;(x) = Axz + Bx + C 

At x = O, Yi = O, C=O 

At x=L/ 2, Yi=~o . Thererore, 

AU BL 
~=-+-

° 4 2 

At x=L, Yi = O. Therefore, 

Solution of (a) and (b) gives, 

4~o 
B = 

L 

(a) 

(b) 

Therefore 

or 

A = 4~o f(CoshPIL+cosPIL+2)-ctl(SinhPIL+sinPIL) 
I PiLzL 

+_2_ {ct l (CoshPI L -cosPI L) - (SinhPI L+sinPI L)} ] 
P1L 

For P1L = 4.73, one gets 

Al = 0.7168 ~o· 

But 

The deflection at any point will be, 

Y(X)=Yi x MF=0.716Moq>I(X)[ 1 ] 
. kL 

1- (_)4 
4.73 

At x=L/ 2, Ymax =~ 

Therefore 

~= 1.13Mo[ 1 ] 
kL 4 

1- (-) 
4.73 

As kL-+4.73, 

Calculation of the moment, M 

= dZy z = 0.716M d
Z
q>[ __ I _ _ ] 

Y.z dx z ° dxz 4.73 
(- )4-1 

. kL 

Since Yz is the additional deflection due to ponding, one 
obtains 

M(x) = - EIy.z' Therefore, 
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22.3729 . [ 1 J 
M(x)= -EI(O.7168~o) x x ({J 2({3X) ---

L2 . 4.73 
(_ )4_1 

At x = 0 , ({J.2=2.0 Therefore, 

M(O) = _ 32.074~o EI[ __ 1_] 
L2 4.73 

(_)4_1 
kL 

kL 

At x = L/2, ({J .2 = -1.21565. Therefore 

M(~)= + 19.495~O~~[-4-.7-31 __ ] 
(_)4_1 

kL 

As kL-+4.73, M-+cx; 

Conclusion 

The problem of ponding of the ,>ingle-span beam 
has been generalized by expressing the pre-ponding 
deflection as an infinite series of the normal mode 
shapes of a vibrating beam having the same end 
conditions. It is shown that the magnification factor for 

the general term of the series is ----. It is pointed 
Fp 

n4(F p)cr 

out that the significance of the critical ponding factor, 
(F p)cr lies in its presence in the magnification factor 
rather than its being a solution to the stability problem. 
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