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Abstract 
A numerical scheme which incorporates the Rutishauser eigenvalue 

method is used to solve for thermal entrance region heat transfer in plane 
Couette flow of a power law non-Newtonian fluid. At entrance the 
prescribed velocity profile corresponds to pressure gradient assisted, fully 
developed Couette flow situation. The temperature profile at entrance is 
assumed to arise as a result of viscous dissipation in a preceding parallel 
plate channel with both plates at fixed temperature TO. As the fluid enters 
the thermal entrance region, it is allowed to experience a sudden change in 
temperature from TO to Tl at the upper moving plate while the lower 
stationary plate is maintained at TO. The energy equation which includes 
viscous dissipation term is solved numerically to predict the thermal 
development of the flow. For fixed values of pressure gradient and viscous 
dissipation . parameters, results for developing spatial temperature, 
cupmixing temperature and upper plate Nusselt number are given for 
power law exponent n = 0.5 (pseudoplastic), n -= 2 (dilatant) and n = 1 
(Newtonian). These results are discussed together with the merits of the 
computational procedure and its extensions. 

Nomenclature 

a distance between plates 
A coefficient matrix, equation (18) 
A t transpose of A 
c specific heat 
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jth expansion coefficient, equations (17,19) 
Eckert number = y2/c (T1 - TO) 
jth eigenfunction, equation (17) 
ith element of jth eigenvector 
heat transfer coefficient 
thermal conductivity 
exponent of power law model, equations (3,4) 
Nusselt number = ha/k 
pressure 
non-dimensional pressure = p/PV2 d 
non-dimensional pressure gradient parameter = - P~ d~ 
Peclet number = Y a/a: 
Prandtl number =.f4 c/k 
Reynolds number = PVa/a 
eigenvectors associated with At 
ith element of jth eigenvector 
temperature 
(T - TO)/(T1 - TO) 
lower plate temperature 
upper plate temperature 
velocity 
non-dimensional velocity = Ii/y 
velocity of upper plate 
stream wise coordinate 
non-dimensional stream wise coordinate = x/aPe 
transverse coordinate 
non-dimensional transverse coordinate = y/a 
thermal diffusivity = k/Pc 
power law parameter, equation (3) 
(JO( ~)n-1 
non-dimensional temperatures, equations (5c,9) 
shear stress 
non-dimensional shear stress = ;: /py2 
jth eigenvalue 
density 

Subscripts 
general grid point 

m cup-mixing 

Superscripts 

t transpose 

Introduction 

The analysis of entrance region heat transfer 
in plane Couette flow of a Newtonian fluid has 
been presented by Sestak and Rieger [1] and 
Bruin [2] among others. Despite the assump-

tion of fully developed velocity profile at 
entrance, the analytical solution of the energy 
equation entails computational difficulties par
ticularly if the effect of additional pressure 
gradjent. is included [2]. To alleviate the 
dif~iculties associated with the computation of 
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the eigenvalues and subsequently Lhe pxpansion 
coefficients, a numerical scheme incorporating 
the Rutishauser matrix transformations was 
developed by the present authors [3] . The 
merits of this numerical procedure are compu
tational simplicity, accuracy and its capability 
to handle different types of boundary condi
tions. The original work [3 J has been recently 
extended to include non-Newtonian behaviour 
[4] for which the mathematical form of the 
velocity profile makes the analytical approach 
extremely complicated if not impossible. In [4] 
a two-parameter Prandtl-Eyring model was 
employed to describe the pseudoplastic beha
viour. The present work extends the study to a 
power law model which permits the simulation 
of both psuedo-plastic and dilitant behaviours . 
The results obtained are therefore of wider 
applicability. Furthermore the present analysis 
improves upon the earlier one [4] by allowing 
for viscous dissipation upstream in establishing 
the temperature profile at the entrance. 

Sample results for spatial temperature, 
CUp-miXing temperature and upper plate Nus
selt number are presented for fixed values of 
pressure gradient and viscous dissipation para
meters. These results demonstrate the influence 
of power law exponent n on thermal deve
lopment of flow. The values of n chosen are ' 
0.5 (psuedoplastic), 2.0 (dilatant) and 1.0 
(Newtonian) to compare the results for three 
different types of fluid behaviour. These results 
are discussed together with the possible 
extensions of the procedure to include tempe
rature dependent viscous properties or axial 
heat conduction effect. 

Problem description 

We consider steady Couette flow of an 
incompressible viscous non-Newtonian fluid 
whose behaviour is described by a power law 
model [5J. As depicted in the insert (Fig. 1) 
the plates are separated by a distance a. The 
lower plate is stationary while the upper plate 
moves with a uniform velocity V. The upper 
and lower plates are maintained at constant 
temperatures T1 and TO respectively. At 
entrance (x -'= 0) the velocity profile is assumed 

to Iw fully developed corresponding to pressure 
gradient assisted flow situation. This assump
tion is valid for most non-Newtonian fluids 
because of high Prandtl numbers [6]. Since 
viscous dissipation is allowed for in the thermal 
entranl.:e r('gion, a similar allowance is made 
upstream (x< 0) whl'w the flow develops 
hydrodynamically . We assume that the entran
ce region is prpcpdcd by a parallel plate 
channt"! with both plates kept at constant 
temperature TO- As result of viscous dissipation 
in this channel, the fluid emerges with a fully 
developed temperature profile and enters the 
thermal entrance region. With both velocity 
and temperature profiles thus prescribed at x= 
0, the fluid undergoes a sudden change in 
temperature from TO to T1 at the upper 
moving plate, the lower stationary plate being 
maintained at TO. The analysis aims to predict 
the subsequent development of the tempera
ture profile . The fact that only the specific 
pro blem just described is solved here does not 
reflect the limitation of the numerical proce
dure presented in the next section. In fact, as 
discussed later, the method is applicable to a 
wide class of thermal entrance problems. 

Formulation 

The pertinent momentum and energy equa
tions for the foregoing problem can be written 
in dimensionless form as 

d'! -_.LQ£. 
dy - Pe dx (1) 

aT a 2T d u - = -- + EcPe 'l ~ 
ax ay2 dy 

(2) 

In writing the momentum equation body force 
and inertia terms have been neglected and the 
flow is assumed to be assisted by a constant 
pressure gradient. The form of the energy 
equation implies constant fluid properties and 
negligible axial heat conduction. 

For a power law non-Newtonian fluid the 
shear stress and velocity gradient are related 
according to 
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- du 
T = aO ( _ )n 

dy 
(3) 

with dimensionless version as 

1 du 
T =_(_)n 

Re dy 
(4) 

Equations (1,2,4) are to be solved subject to 
the following conditions 

y = 0, x>O , u = 0, T = 0 
y = 1, x>O , u = 1, T = 1 
x = 0, O~y~l , T = T(O,y) = cj>(y) 

(5a) 
( 5b) 
(5c) 

All symbols appearing in the above formulation 
are defined in the Nomenclature and need not 
be repeated here. 

Method of solution 

Integrating the momentum equation (1) gives 

T = Py + Co (6) 

Further substituting equation (6) into (4) and 
integrating using the appropriate boundary 
conditions on u from equations (5a, 5b) gives 
the velocity profile as 

n+ 1 n+ i 
u = (n~l)P ~PY + CO)-n - Co -n J (7) 

where Co is given by 

n+1 n+:J,.l 
(n+~)P ~P+CO)~ - Co -;;-j -1=0 (8) 

For assigned values of nand P equation (8) 
was solved by bisection iterative procedure [7] 
to obtain CO, 

To facilitate the solution of equation (2) we 
introduce the transformation [8] 

s (x , y) = T(x , y) - ljJ ~y) (9) 

into equation (2), make use of equations (4,7) _ 

and carry out some manipulation to obtain the 
energy equation in the form 

as a 2s d2~ n+1 
u -= - + -- - + EcPr (Py + CO)I1 (10) 

ax ay2 dy2 

The function ljJ is chosen such that it satisfies 

d2~ n+1 
-2- + EcPr(Py + CO) n = 0 (11) 
dy 

thus simplifying equation (10) to 

as a 2s u-=--
ax ay2 

(12) 

In accordance with equation (9), the tempera
ture boundary conditions (5a,5b,5c) take the 
form 

y = 0, x> 0, B= 0, ~ = 0 
y = 1, x>O, B= 0, ~ = 1 
x = 0, O~y~l, e = cj>-~ 

(13a) 
(13b) 
(13c) 

The function cj>(y) in equation (13c) can be 
specified arbitrarily. To obtain specific results, 
we take the profile to be that which would 
occur under fully developed condition as a 
result of viscous dissipation in a parallel plate 
channel with both walls maintained at TO (see 
inset in Fig. 1). This can be obtained by 

setting ~~ = 0 in equation (2) and solving it 

for constant temperature conditions TO at the 
plates. 

The solution for ~ is straightforward and is 
given by 

n2EcPr 3n+1 
~= - (2n+1)(3n+1)p2 (pY+CO)Il + 

C1 
P (py+CO)+C2 (14) 

where 

C = 1 + n
2

EcPr ~P + 
1 (2n+1)(3n+1)p2~ 



3n+1 3n+1] 
Co) n - Co n (15) 

and 

n2EcPr 3n+l Cl 
C - (CO) n - - Co 

2 - (2n+1)(3n+1)p2 P 
(16) 

Following the method detailed out in [3,4] the 
solu tion of equation (12) is expressed as 
8=f(x)g(y) leading to the series solution 

8 = ~ C' g.(y) exp(-A' x) . J J J 
J 

(17) 

where Cj are the expansion coefficients and Aj 
and gj(y) are the eigenvalues and eigenvectors 
of the matrix 

Ag = Ag (18) 

which is obtained by expressing the equation 
for g namely gil + AUg =0 in finite difference 
form with suitable grid size. In (18) A denotes 
the coefficient matrix. For any grid point i, 
equation (17) becomes 

8i = ~ Cj gij exp(-AjX) 
J 

(19) 

where gij is the ith element of the jth 
eigenvector. The eigenvalues Aj are obtained by 
applying to equation (18) the lower and upper 
matrices transformations based on Rutishauser 
method [3,4] . The gaussian elimination is next 
used to determine the corresponding eigenvec
tors gj' To evaluate Cj it is necessary to 
determine the eigenvectors of transpose of A, 
i.e. At and then utilise the orthogonal property 
of eigenvectors of A and At together with the 
initial condition, equation(13c) which is x = 0, 
8i = !/Ii -l/Ji to give Cj as [3,4] 

n n 
Cj = [ i;;l Sij (!/Ii - l/Ji)]/ i~l Sij gij (20) 

where Sij represents the ith element of jth 
eigenvector of At. 

The subsequent evaluation of cup-mixing 

temperature and upper plate Nusselt number 
follow exactly the procedure outlined in [3,4] . 

The numerical computations were all carried 
out on HP2100S digital computer of the 
College of Engineering, University of Riyadh. 

Results and discussion 

For brevity of presentation the additional 
pressure gradient parameter P and viscous 
dissipation parameter EcPr are fixed at unity in 
all results . Fig. 1 shows a typical set of 
developing temperature profile for n = 0.5 
(psuedoplastic), n= 1.0 (Newtonian) and n := 

2.0 (dilatant). In early stages (x = 0.02) the 
profile develops faster for psuedoplastic fluid 
compared to dilitant fluid. However, as x 
increases the speed of development for dilitant 
fluid is such that it overtakes the psuedoplastic 
fluid. This can be observed from the profiles at 
x = 0.1. At x = 00, the thermal development of 
flow is complete and the profiles conform to 
equation (14). 

lOf 
-- -- --
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0.8 EcPr = 1 

0.7 - -- n =0.5 
---- n = 1.0 
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0.1 

0. 25 0.50 0.75 1.00 
Y 

FIG. 1 Effect of exponent n on spatial temperature 
development. 

The development of cup-mixing temperature 
is shown in Fig. 2. At low values of x, the 
value for dilatant fluid is higher than that for 
psuedoplastic fluid but the trend reverses at 
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higher values of x. With the attainment of fully 
developed condition, the highest temperature is 
achieved by psuedoplasiic fluid followed by 
dilitant and Newtonian fluids. For Newtonian 
fluid the cup-mixing temperature is lowest 
throughout the entrance region. 

0 ... 
0.001 

__ L _ 

0.0' 
_ --1 

A.' 'a 

FIG.2 Effect of exponent n on cup·mixing temper~' 
ture development. 

Fig. 3 contains the results fur NuS~(oIl 

number at the upper piMt' r.umflarpo to 
Newtonian fluid, the Nusselt number i~ hlgher 
for psuedoplastic fluid and lowel for dil;ltant 
fluid. The same trend has been found : OJ 

'2 r--------------

8 
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p =, 
EcPr _ , 
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FIG.3 Effect of exponent n on the development of 
Nusselt number at upper plate. 

entrance region heat transfer analysis III 

circular tubes [9]. 

Concluding remarks 

Although a specific problem has been solved 
here the computational procedure used is 
applicable to a wide class of thermal entrance 
problems. For exampl<>, it can handle flux type 
boundary conditions as demonstrated in [3]. It 
has also been used for thennal f'ntrance region 
heat transfer in a circular tube for both 
constant temperature anu o:onstant heat flux 
boundary conditions rIOj.flle chief merits of 
the method are that the v('\ocity and tempera
ture profiles at entrance can be prescribed 
arbitrarily and that it gives accurate results 
even for a moderate size grid. 

In the work presented so far we have not 
included the effects of axial conduction 
(important at low Peclet numbers) and tempe
rature dependent viscous properties in the 
analysis. It is known that both these effects 
can significantly affect the heat ransfer rates. 
The authors are cUIT('ntly engaged with further 
development of the C'omputfliional procedure 
to accomodate the aforemC'nwmed effects. 
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